Contributions to Geology and Mineral Resources Research

南岭燕山期构造-岩浆热事件与锡田锡钨成矿

吴自成^{1,2},刘继顺¹,舒国文¹,王 伟¹,马慧英¹

(1. 中南大学 地学与环境工程学院,长沙 410083; 2. 甘肃有色金属地质研究所,兰州 730000)

摘 要: 燕山期发生的与岩石圈减薄和构造转折有关的壳幔相互作用,引起了地球深部能量和 物质向浅部的大规模传输,造成了南岭中生代构造-岩浆热事件,从而为成矿作用提供了必需的 热、流体、挥发组分和成矿元素,形成了巨量金属堆积的独特地质背景。处于南岭多金属成矿带中 段北缘的锡田锡钨成矿区即是在此热事件作用下,形成了云英岩型、似伟晶岩壳型、夕卡岩型、构 造蚀变岩型、石英脉型锡、钨多金属矿床。

关键词: 构造-岩浆热事件;锡钨成矿;燕山期;锡田多金属矿床,湖南省 中图分类号: P611;P618.4 文献标识码: A 文章编号: 100F 1412(2010) 03-020 F 05

0 引言

扬子板块和华夏板块从新元古代晋宁期至加里 东期多次微型陆- 陆碰撞造山和中生代太平洋板块 向华南陆壳俯冲引发陆缘增生和陆内岩片叠复增 厚、重熔,从而形成南岭多金属成矿带不同时代、多 种类型的花岗岩浆侵位和喷出活动^[1,2]。裴荣富等 认为构造- 岩浆热事件为金属的巨量堆积提供了良 好的动力、通道和空间^[3]。本文试图通过构造- 岩 浆热事件对钨锡成矿的控制作用探讨锡田多金属矿 的矿床成因。

1 地质概况

锡田多金属矿床位于湘东茶陵县城以东 25 km 处,系南岭多金属成矿带北缘,扬子板块与华夏板块 接合带的东缘。

矿区出露地层主要为上古生界上泥盆统锡矿山 组、佘田桥组、中泥盆统棋梓桥组、跳马涧组及下石 炭统岩关阶(图1)。其中,棋梓桥组、锡矿山组下 段、佘田桥组分布广泛,主要由不纯的碳酸盐岩组 成,因受印支期- 燕山期构造运动的影响,岩石节 理、裂隙发育,为钨锡矿床的主要赋矿层位。

矿区所处的炎陵一郴州一蓝山断裂带是湘东南 重要的控岩控矿构造带,属 I 级基底断裂,南岭多金 属成矿带中段大部分多金属矿床都位于其两侧。该 断裂带为震旦纪一早古生代的同生沉积断裂,到加 里东运动时挤压形成板片仰冲带。印支期由于陆下 岩石圈继续由南东向北西深俯冲,导致南东侧震旦 系一奥陶系褶皱基底进一步仰冲到晚古生代沉积盖 层之上,构成上行板片,控制了加里东花岗岩的分 布^[4]。燕山期由于同方向的 A 型俯冲作用及湘东 南伸展构造的兴起,形成伸展构造外围隆起带,导致 该带花岗岩形成多期次复式岩体。

曾昭健认为湘东南存在一明显的重力梯级带, 在香花岭、骑田岭、千里山、锡田形成局部重力低异 常^[5],这反映了隐伏岩体或构造岩浆带的存在。锡 田矿集区内岩浆侵入活动频繁,已发现大小岩体20 余个,出露面积达207.6 km²,主要为燕山早期中细 粒斑状黑云母花岗岩、细粒含斑黑云母花岗岩及晚 期细粒斑状二云母花岗岩。此外,区内脉岩发育,主 要受 NE 向断裂控制,亦有呈NW 向展布,大部分脉 岩成群成组产出,岩性为花岗斑岩、石英斑岩、花岗 细晶岩、石英正长岩、伟晶岩、闪长岩等。

区内成矿作用显著,形成一个以锡田岩体为中 心向外依次为岩体型钨-锡矿床、云英岩脉型钨-锡矿、构造蚀变带型钨-锡矿床、夕卡岩型锡-钨矿

收稿日期: 2009 05 27

作者简介: 吴自成(1972), 男, 甘肃山丹人, 高级工程师, 博士研究生, 主要从事矿产勘查与矿床地质研究工作。通信地址: 湖南省长沙市中南大学校本部研南楼 403 室; 邮政编码: 410083; E-mail: zichengwu@ 126. com

图1 锡田钨锡矿区地质图

Fig. 1 Geological map of Xitian W-Sn deposit

1. 第四系 2. 下石炭统 3. 上泥盆统锡矿山组上段 4. 上泥盆统锡矿山组下段 5. 上泥 盆统佘田桥组 6. 中泥盆统棋梓桥组 7. 中泥盆统跳马涧组 8. 燕山晚期细粒斑状二 云母花岗岩 9. 燕山早期细粒含斑黑云母花岗岩 10. 燕山早期中细粒斑状黑云母二 长花岗岩 11. 地质界线 12. 断层 13. 构造蚀变带- 夕卡岩复合型钨锡矿脉及编号 14. 夕卡岩型钨锡矿体及编号

床、裂隙充填型锡-铅锌矿床的矿化分带^[6]。蚀变强烈,主要见有角岩化、大理岩化、夕卡岩化、钠长石化、绢云母化、白云母化、云英岩化、电气石化、帘石化、萤石化、碳酸盐化。

2 构造- 岩浆热事件

从中国东部(一般指贺兰山一龙门山一线以东 直至东部沿海的我国东北、华北、华东、中南广大地 区)矿床的空间分布来看,板块或古陆的边缘往往是 矿床的密集分布区,因此板块边缘与边界的成矿作 用已经受到了普遍重视^[7,8]。南岭成矿带中生代构 造- 岩浆热事件即系该地区岩石圈演化过程中各种 特定地质条件综合作用的结果,而其中的关键问题 是发生在中生代的大规模、突变性的构造及动力学 转折。关于中国东南部与南岭多金属 成矿带有关的构造、岩浆活动及其与成 矿的关系前人进行了大量的研究工作。 例如,邓晋福等认为中国东南部在印支 期拼合形成统一大陆后^[9],由于发生了 造山岩石圈根的拆沉- 去根作用,而使 该区岩石圈在燕山期减薄了 50 km 以 上, 而这些大于 50 km 厚的岩石圈物质 被软流圈物质取代所产生的化学不平 衡和物理不稳定可能成为本区燕山期 强烈的岩浆构造事件的深部因素。任 纪舜等认为中国东部构造动力之彻底 改变,即EW 向构造格局转变为 NE-NNE 向构造是在侏罗纪末- 白垩纪初 (约155~140 Ma)的中燕山运动^[10]:在 西太平洋古陆与亚洲大陆的挤压作用 达到高潮之后,亚洲东部大陆边缘发生 大规模的裂解。李文达等[11] 提出中国 东南大陆岩石圈的构造环境经历了 176 ~ 150 Ma的挤压、145 Ma由挤压向伸 展扩张的转换、125~105 Ma的扩张增 强以及 92 Ma 左右进入裂解阶段,而中 生代大规模的火山-侵入作用和成矿 作用主要发生在大陆伸展- 地壳减薄 期。李献华研究了华南花岗岩的地质 年代学和地球化学[12],发现燕山早期与 燕山晚期的岩浆活动在时间、空间和成 分上存在着显著的差异,而且两者之间 存在着约10Ma的岩浆活动间隔,这很

可能显示构造环境(由挤压向伸展)的改变,即华南 岩石圈动力学在大约146 Ma开始的白垩纪以伸展 拉张为特征。万天丰认为在中国大陆东部的板内拉 张带发生的成矿作用是最重要的^[13]。华仁民等认 为中国东部中生代成矿大爆发是该地区在特定地质 背景下发生岩石圈大减薄和构造格局大转折相结 合、从而导致大规模壳幔相互作用和构造圈热侵蚀 事件的产物^[14]。

笔者认为,正是中生代发生与岩石圈减薄和构 造转折直接有关的大规模壳幔相互作用,由此引起 地球深部能量和物质向浅部的大规模传输,造成了 南岭成矿带中生代构造-岩浆热事件(表现为发育 大面积的燕山期花岗岩),从而为大规模成矿作用提 供了必需的热、流体、挥发组分和成矿元素,形成了 巨量金属堆积的独特地质背景。处于南岭多金属成 矿带中段北缘的锡田钨锡成矿区即为此热事件的受 益者。

该区构造、岩浆活动强烈,发育有大量的燕山期 花岗岩,主要可分为早、晚两期,其空间展布受吕梁 期、晋宁期及加里东期形成基底构造的制约^[15],呈 NNW 向的哑铃状。

锡田岩体的主要造岩矿物种类和平均含量总体相 近(表1),仅结构存在一定差异⁶⁾,与南岭地区同时代 花岗岩对比,锡田岩体花岗岩中黑云母含量略偏低,其 他矿物含量大致相同。从岩石种类和造岩矿物、副矿 物组合来看, 完全可以与泛非造山运动有关的阿尔及 利亚Hoggar Taourint 后造山花岗岩套类比^{16,17]}。锡田 岩体微量元素特征也显示出该区锡、钨成矿作用与花 岗岩有密切联系。成矿元素 W, Sn, Mo, Bi, Cu, Li 等丰 度特别高(表 2),通常是维诺格拉多夫(1962)酸性岩平 均值的 5~20 倍, 特别是 W, Sn 等元素丰度在较晚次岩 石中最高, 如亲氧元素中的 Sn 的质量分数高出同类岩 石维氏值 6~11 倍, W 在早期边缘相岩石中高出约 1 倍, 而在内部相岩石中高出 28 倍, 晚期岩体岩石中高 出5 倍。

表 1 锡田花岗岩化学成分及有关参数

Table 1	Chemical	compositions	and related	parameters of	the Xitian granites
		1		1	0

岩性	SiO_2	T iC	0 ₂ A	$l_2 O_3$	Fe_2O_3	FeO	M nO	M g() Ca) N	a20	K_2O	P_2O_5	H ₂ O+,灼失
γ 2 ^{1 a}	73.99	0.1	6 13	3.01	0.23	2.25	0.04	0.2	2 1.0	08 2	. 86	5.65	0.04	0.35
γ 2 1b	75.52	0.0	07 12	2.06	0.54	2.28	0.08	0.2	0 0.6	52 3	. 23	4.45	0.01	0.93
γ 3 -1	75.82	0.0)5 12	2.03	0.20	2.45	0.06	0.1	2 0.7	0 3	. 18	4.70	0.02	0.59
岩性	Ap	M t	Or	Ab	An	Qz	С	Hy	A/CNK	DI	SI	AR	σ	K ₂ O/ Na ₂ O
γ 2 1 a	0.09	0.34	33.54	24.31	5.15	31.63	0.31	4.32	1.02	89.49	1.96	4.05	2.33	1.98
γ 3 ^{1b}	0.02	0.79	26.55	27.59	3.05	36.73	0.83	4.31	1.07	90.86	1.87	4.07	1.81	1.38
۲ ³ ¹ 0.04	0.29	27.96	27.09	3.38	35.97	0.49	4.69	1.04	91.01	1.13	4.25	1.89	1.48	

量的单位: w B/ %;资料来源:湖南省地质调查院基础所《1 : 25 万衡阳市幅区域地质调查报告(送审稿)。

表 2 锡田花岗岩的微量元素组成

Table 2 Average contents for some trace elements of the Xitian granites

岩性	W	Sn	Mo	Bi	Cu	Pb	Zn	As	Ag	$\mathbf{S}\mathbf{b}$	Нg	\mathbf{Sr}	Ba	V	T h	U
γ_5^{2-1a}	2.7	25.3	7.98	0.4	293.3	47.4	66	2.3	0.029	0.4	0.017	49	221	12.5	65.5	10.6
$\gamma_5^{2\text{-}1\mathrm{b}}$	43.21	49.7	18.81	15.7	72.1	61.9	55	7.2	0.304	1	0.142	10	74	8.5	41	20.8
x3-1	7.78	33.6	15.49	7.7	36.1	51.6	42	8.9	0.135	0.7	0.065	10	61	8.1	39.2	12.4
岩性	Со	Ni	Be	Та	Nb	Zr	Ηf	Rb	Cs	Cr	\mathbf{Sc}	Cd	Ga	Li	Au	
γ 2 -1a	3.6	8.4	5.5	1.9	20.8	127	5.1	375	16.4	7.7	3. 7	0.03	21.7	79	0.0010	
γ 2 -1b	3.6	10.8	18.8	14.3	38.9	96	3.7	803.7	58.2	20	6.2	0.17	25.1	382.1	0.0015	
γ 3 -1	3.1	10	6.3	9.6	33.1	96	3.3	819.2	63.1	22	4. 3	0.04	22.5	387.2	0.0018	

量的单位: w_B/10-6;资料来源:湖南省地质调查院基础所《1:25万衡阳市幅区域地质调查报告(送审稿)》。

2.1 燕山早期花岗岩地质特征

早期中细粒斑状黑云母二长花岗岩(s^{2} ^{1a})为边 缘相,呈岩基产出。侵入时代(165±16)Ma^[18]。岩 石呈似斑状结构,中细粒花岗结构,块状构造。斑晶 为钾长石,含量10%~15%;基质为石英(31%~ 35%)、钾长石(30%~40%)、斜长石(25%~ 30%)、黑云母(3%~9%)、磷灰石($\leq 0.1\%$)、萤石 (0.2%)、锆石(<0.1%)等。常见暗色微粒包体,成 分为闪长质、石英闪长质,包体中针状磷灰石发育, 长宽比在1:30~1:60间,为镁铁质微粒包体,暗 示壳幔岩浆作用强烈。

早期细粒含斑黑云母花岗岩(¥5 1b) 为内部相,

呈小岩株产出。侵入时代(151±24) Ma^[18,19]。岩石 为斑状结构,细粒花岗结构,块状构造。斑晶为钾长 石,含量在 5% 左右。基质由石英(28% ~ 30%)、钾 长石(28% ~ 38%)、斜长石 25% ~ 30%、黑云母 5% ~ 12%、白云母 ≤1%、锆石 0.1% ~ 0.2%、萤石 ≤0.1%组成。

2.2 燕山晚期花岗岩地质特征

晚期侵入体以细粒斑状二云母花岗岩(x³¹)为 主,呈小岩株产出。侵入时代(114±14)Ma^[18]。岩 石为斑状结构,细粒花岗结构,块状构造。斑晶钾长 石含量约10%。基质由石英(35%~40%)、钾长石 (30%~36%)、斜长石(20%~25%)、黑云母(2%~ 3%)、白云母(3%~ 5%)、帘石(0.1%)、萤石(≤
0.1%)和黄玉(约2%)组成。

3 构造- 岩浆热事件与成矿的关系

南岭花岗岩主体属于下地壳重熔的富 Be, Li 和 F,高 Si 富 K 花岗岩类, 被称之为典型的 BELIF 花 岗岩^[3]。这类岩体具有高温驱动力、强大高挥发分 蒸汽压力和极强渗透力, 对成矿物质的传导、卸载和 使之超巨量堆积起到极其重要的激发作用。此外, 南岭地区与成矿有关的花岗岩含有大量的放射性物 质,其 $w(U+Th) - \theta \ge 80 \times 10^{-6}$, 可称之为高热花 岗岩(HHP)^[20]。这些都证实本区在大地构造演化 过程中由于"构造圈热侵蚀"形成大规模高温、高热 花岗岩侵位, 从而引发成矿作用突变, 造成巨量金属 堆积是完全可能的。

锡田岩体作为南岭花岗岩的一部分,其位于 NE 向炎陵 一郴州基底断裂与 NW 向安仁一龙南深 大断裂的交汇部位(图2)。在西太平洋古陆与亚洲 大陆的挤压作用形成的 NE 向压扭性构造严塘 — 小 田复式向斜,被亚洲东部大陆边缘发生大规模的裂 解所形成的 NW 向张扭性断裂所切割, 诱发了大规 模的岩浆侵入,形成了NW向的锡田岩体西侧为 NE 扬起、SW 倾伏的严塘复式向斜,东侧为 SW 扬 起、NE 倾伏的小田复式向斜。同时中生代构造-岩浆热液活动频繁发生,使岩浆中和活化矿源层中 的成矿物质得以大量富集,就位于张扭性裂隙构造 中成矿。其模式大致为燕山早期形成的斑状花岗岩 或花岗岩侵入到泥盆系灰岩或砂页岩中,花岗岩固 结后产生断裂并有后期石英斑岩、花岗斑岩侵入。 后期形成的成矿母岩侵入到斑状花岗岩及其围岩 中,由于自变质作用或岩浆期后成矿热液作用的影 响,在其顶部形成岩体型及面状云英岩型钨-锡矿, 接触面内侧形成似伟晶岩壳型锡矿: 在花岗岩与灰 岩接触的有利部位或灰岩的层间破碎带中形成夕卡 岩型锡、钨多金属矿;在成矿母岩外接触带的斑状花 岗岩、花岗岩、灰岩、砂页岩的有利构造部位形成构 造蚀变岩型、石英脉型锡、钨多金属矿。

4 结论

南岭地区中生代大规模的陆内造山和强烈的岩

图 2 构造- 岩浆岩分布图 Fig. 2 Tectonic magmatite map 1. 深大断裂 2. 岩体 3. 锡田多金属成矿区

浆活动造成"构造圈热侵蚀",引发壳- 幔馈变,从而 形成南岭燕山期同熔重熔花岗岩带。该构造- 岩浆 热事件成为锡田爆发异常成矿的动力,当与表壳控 矿构造相耦合时,激发常规成矿发生突变,促成该区 巨量金量堆积,对形成锡田锡钨多金属大型矿床起 到了决定性的作用。

参考文献:

- [1] 陈毓川, 裴荣富. 南岭地区与中生代花岗岩类有关的有色及稀 有金属矿床地质[M]. 北京: 地质出版社, 1989: 20-47.
- [2] 南岭项目花岗岩专题组. 南岭花岗岩地质及其成因和成矿作 用[M]. 北京:地质出版社, 1989: 57-66, 285-287.
- [3] 裴荣富,邱小平,尹冰川,等.成矿作用爆发异常与巨量金属堆积[J].矿床地质,1999,18(4):333340.
- [4] 车勤建. 湘南锡多金属矿集区燕山期岩浆- 流体- 成矿过程 研究[D]. 北京:中国地质大学, 2005: 12 16.
- [5] 曾昭健. 湖南有色金属矿产成矿条件与找矿前景[J]. 湖南地 质, 1995, 16(4): 154 158.
- [6] 蔡新华, 贾宝华. 湖南锡田锡矿的发现及找矿潜力分析[J]. 中 国地质, 2006, 33(5): 1100 1108.
- [7] 翟裕生.古大陆边缘构造演化和成矿系统[C].北京大学地质 学系.北京大学国际地质科学学术研讨会论文集.北京:地震 出版社,1998:769778.
- [8] 毛景文. 浅议扬子地块周缘金矿床成矿的一些特点[J]. 矿床

第25卷 第3期

205

地质, 1998, 17 (增刊):11-14.

- [9] 邓晋福. 中国大陆根- 柱构造——大陆动力学的钥匙[M]. 北 京: 地质出版社, 1996.
- [10] 任纪舜, 牛宝贵, 和政军, 等. 中国东部的构造格局和动力演 化[J]. 地学研究, 1997, (第 29 30 号): 43-55.
- [11] 李文达,毛建仁,朱云鹤,等.中国东南部中生代火成岩与矿 床[M].北京:地震出版社,1998.
- [12] 李献华. 华南白纪岩浆活动与岩石圈伸展[C].见:中国科学院地球化学研究所.资源环境与可持续发展.北京:科学出版社,1999:264 273.
- [13] 万天丰. 中国东部中、新生代变形构造应力场及其作用[M].北京: 地质出版社, 1993.
- [14] 华仁民,毛景文.试论中国东部中生代成矿大爆发[J].矿床
 地质,1999,18(4):300307.
- [15] 邓平, 舒良树, 肖旦红. 中国东南部晚中生代火成岩的基底探

讨[J]. 高校地质学报, 2002, 8(2): 170-179.

- [16] Bonin B, Azzouni Skkal A, Bussy F, et al. Alkali calcic and alkaline post orogenic (PO) granite magmatism: petrologic constraints and geodymic settings[J]. Lithos., 1998, 45: 45 70(in chinese with English abstract).
- [17] 马铁球, 王先辉, 柏道远. 锡田含 W, Sn 花岗岩体的地球化学
 特征及其形成构造背景[J]. 华南地质与矿产, 2004, (1): 11 16.
- [18] 刘国庆, 伍式崇, 杜安道, 等. 湘东锡田钨锡矿区成岩成矿时 代研究[J]. 大地构造与成矿学, 2008, 32(1):63-71.
- [19] 马铁球,柏道远, 邝军,等. 湘东南茶陵地区锡田岩体锆石
 SHRIMP定年及其地质意义[J]. 地质通报, 2005, 24(5):
 415-419.
- [20] 毛景文,李红艳,宋学信.湖南柿竹园钨锡钼铋多金属矿床地 质与地球化学[M].北京:地质出版社,1998:34-47.

THE RELATIONSHIP BETWEEN YANSHANIAN TECTONIC - MAGMATIC THERMAL EVENT AND TIN, TUNGSTEN MINERALIZATION AT XITIAN, NANLING AREA

WU Zi cheng^{1, 2}, LIU Ji shun¹, SHU Guo wen¹, WANG Wei¹, MA Hui ying¹

(1. School of Geoscience and Environmental Engineering Central South University, Changsha 410083, China; 2. Gansu Institute of Geological f or Nonferrous Metals, Lanzhou 730000, China)

Abstract: During Yanshanian Period occurred lithospheric thinning and tectonic variation that led to crust-mantle interaction and transfer of energy and material at depth of the earth to the shallow resulting in the Mesozoic tectonic - magmatic thermal event in Nanling metallogenic belt,. The event provided heat, fluid, volatile components and ore forming elements and a unique geological background with huge voluminous metal accumulation. Under the background greisen, pegmatitic shell, skarn, altered cataclastic rock and quartz vein types of Srr W polymetallic deposits are formed in Xitian Srr W ore district at the north margin of the middle of Nanling polymetallic metallogenic belt

Key Words: tectonic magmatic thermal event; tim tungsten mineralization; Yanshanian Period; Hunan Province