湘黔地区下寒武统黑色岩系型镍钼矿床中 磷结核的成分特征初步研究

江永宏

(中国地质调查局发展研究中心,北京100037)

摘 要: 对湘黔地区下寒武统黑色岩系底部镍钼矿床中磷结核的成分进行了电子探针分析。根据 20个磷灰石成分的测定结果,得出 Ca/P 变化范围为 1.36~1.710,平均值为 1.605,认为磷结核中磷灰石类型为羟磷灰石,成因类型为生物化学沉积型。磷结核中 Na⁺,Fe²⁺,Al³⁺,La³⁺,Sm³⁺,Ce⁺,Cr³⁺,Ti⁴⁺的含量较高,并且均显示了异常丰富的组合类型,如 Na⁺和 LREE。在 1/4大小的磷结核横剖面上,存在着单核或双核沉积中心,结核的内部构造类型为不规则纹层状。磷结核从边部到中心的贵金属元素,其活性元素相对惰性元素的参数(Pd/Pt,Ag/Au,TD/SUHR)呈现同样的变化趋势。磷结核的外层是相对活性的元素,核部则为相对惰性的元素,部分相对活性的元素(如 Pt,Pd,Ag)向外层发生初步迁移。铂族元素的超常富集归因于携带海底岩石物质的热水作用。

关键词: 湘黔地区;磷结核;羟磷灰石;贵金属元素;生物化学沉积 中图分类号: P616.3;P618.63 文献标识码: A 文章编号: 100+1412(2010)0+0012-06

0 引言

在华南扬子地台东南缘的湘黔地区沉积了一套 以硅质岩、碳质泥(页)岩、磷块岩、粉砂质泥岩等为 主夹石煤、重晶石、碳酸盐岩的黑色岩系,含有机碳 较高(一般为 5%,高者达 20%),是磷块岩矿床和 镍、钼、钒、硒、稀土元素、铂族元素共生矿床的有利 赋矿围岩。湘黔地区黑色岩系的形成及其金属元素 矿化经历了沉积期、成岩期、后生期和表生期等多期 作用^[3,8]。特别是湘黔地区张家界、遵义一带下寒武 统底部的矿化黑色岩系,被认为是一重要的界线事 件层。

黑色泥质磷块岩位于下寒武统牛蹄塘组底部的 黑色含碳酸盐泥质硅质岩之上,属于沉积期和成岩 期阶段。黑色岩系成岩成矿阶段不同,矿物组合亦 不同。矿物的标型特征反映黑色岩系镍钼矿床的成 因与介质流体的环境^[1,3-8,11]。本文以电子探针分 析为手段,对湘黔地区下寒武统黑色岩系型镍钼矿 床中的磷结核成分特征进行了初步研究。

1 磷结核地质特征

贵州超大型的织金磷矿和湖南张家界的天门山 多金属矿,其有用组分都赋存在磷酸盐地层中。在 贵州遵义中南村和湖南张家界镍钼矿床的牛蹄塘组 底部发育有稳定分布的磷结核层。磷结核颜色相对 较浅,呈深灰色。大小一般为1~4 cm,最小者不足 1 cm,最大者可超过6 cm。有的与外部粘土质分野 清晰,表面光滑;有的表面具有葡萄状小突起,手感 粗糙;有的聚集成群构成连生体;有的则与外部粘土 质结合紧密,无法剥离。

在镜下可见(图 1),生物体磷酸盐化的程度差 异很大,有的已完全磷酸盐化,有的只在边缘或内部 略有磷酸盐化作用的现象,有的大部分已转变成磷 酸盐,只在中心存在少量的有机质。形状多为椭圆 状、球状、透镜状、扁平状或不规则状。磷结核形成 于早期成岩阶段。成岩作用早期以形成磷质结核和

收稿日期: 2008-12-01; 改回日期: 2010-01-18

基金项目: 国家自然科学基金项目(40073012)、国家重点基础研究发展规划项目(G1998040800)、国土资源大调查项目(199910200264, 20001020223023, 200313000068-02) 资助。

作者简介: 江永宏(1973), 男, 安徽庐江人, 助理研究员, 博士研究生, 矿物学、岩石学、矿床学专业, 从事地质调查、矿床成因矿物学与生 命成因矿物学研究。通信地址: 北京市西城区阜外大街45 号中国地质调查局发展研究中心; 邮政编码: 100037; E-mail: jacky kat@ sin a. com

图 1 湘黔地区不同成矿阶段和磷结核高分辨率图像
Fig. 1 The photograph of the different mineralization stages and phosphate nodule in Hunan Guizhou Area
反射光照相: a. 粗粒硫化物(DS 13 A, 20×10) b. 细粒硫化物(DS 13 A, 20×10) c. 磷结核(T ⊢ 1, 5×10) d. 硫化物-方解石脉(DS 13 C, 20×10)

钙质结核为特征,晚期形成极细小的硫化物方解石 或硫化物羟磷灰石短脉。磷结核主要由磷灰石和石 英组成,并含有方解石和粘土矿物、重晶石、有机质 和黄铁矿^[2]。磷灰石主要出现在黑色岩系形成与演 化的成岩期,pH>7.8,Eh= - 0.3 V,其矿物组合 包括:磷灰石、方解石、铁白云石、胶磷矿、重晶石、石 膏、黄铁矿、黄铜矿、闪锌矿、砷黝铜矿、硫钼矿、辉砷 镍矿、辉镍矿、针铁矿、碳沥青、石英、二硫镍矿。

2 磷灰石矿物标型特征

2.1 磷灰石化学成分特征

采用电子探针分析法,对 2 个磷结核光薄片样 品中磷灰石的 20 个点位(图 2,图 3)进行分析,化学 成分有 SiO₂, TiO₂, Al₂O₃, FeO, MnO, MgO, CaO, NæO, K₂O, P₂O₅, Au, Ag₂O, CuO, Pt, LæO₃, Nd₂O₃, Ce₂O₃, Sm₂O₃, Cr₂O₃(表 1)。

从表 1 可见, 磷灰石中 Na⁺, Fe²⁺, Al³⁺, La³⁺, Sm³⁺, Ce⁺, Cr³⁺, T i⁴⁺ 含量较高, 并且均显示了异 常丰富的组合类型, 如 Na⁺ 和 LREE。它们的离子 半径与晶格的 Ca²⁺ 半径相近, 容易取代 Ca²⁺ 而进入 磷灰石晶格, 而 Cr³⁺, Ti⁴⁺, V³⁺, Ni²⁺ 反映了矿物组 合中有粘土矿物或硅质 矿物(如燧石) , 因为 N i, Cr 与粘土矿物有关, 而 V, Ti 与 硅 质 矿 物 有 关^[9] 。

2.2 磷灰石晶体化学特 征

根据磷灰石的晶体 化学式 Cas (PO4)3 (OH),采用13个氧原子 法计算本文磷结核中磷 灰石晶体化学式,结果见 表2。

从表 2 可见:

(1) (P-3)×10和
(Ca/P-1)×10分别反
映磷的含量以及 Ca/P
比。通过等值线作图(图
2,图3),可清楚地看到
在1/4大小的横剖面上,存在着单核或双核沉积
中心,结核的内部构造类

型为不规则纹层状。

(2) Ca/P 比值的变化范围为 1. 36~ 1. 710, 平 均值为 1. 605, 略低于羟磷灰石的理论值(1. 667), 也比现代生物磷灰石(1. 649~ 1. 665) 略低^[10], 而远 低于化石磷灰石的理论值(1. 821~ 2. 155) 和碳氟磷 灰石(2. 99), 说明磷结核中磷灰石类型为羟磷灰石, 其他离子如 CO²⁺, F⁻对 PO³⁺ 的置换不多。

2.3 磷灰石中贵金属元素含量特征

从磷灰石中贵金属元素分析结果(表 3) 可见:

(1)磷结核从边部到中心的贵金属元素,其活性 元素相对惰性元素的参数(Pd/Pt, Ag/Au和TD/ SUHR)呈现同样的变化趋势。过去的文献揭示,在 水热流体系统中Pd相对于Pt, Ag相对于Au, Pt和 Pd相对于Os, Ru, Rh, Ir 是更为活性的^[2,3,12,13]。

(2)磷结核的外层是相对活性的元素,核部显示 相对惰性的元素,部分相对活性的元素(如 Pt, Pd, Ag)向外层发生初步迁移。分析结果显示,8 个贵金 属元素,除了 Ru, Ir 在结核中局部富集外,其他成分 (主要是高成分元素)从核部主要向页岩以及向外层 增加, Pt, Pd, Au 和 Ag 的高成分元素在变化趋势中 是更规则的。

表 1	贵州遵义磷结核中磷灰石的电子探针分析数据
表 1	贵州遵义磷结核中磷灰石的电子探针分析数

	1 4010									
成分	ZN16-1	ZN16-2	ZN16-3	ZN 16-4	ZN16-5	ZN16-6	ZN16-7	ZN 16-8	ZN16-9	ZN16-10
TiO ₂					0.44	0.33	0.42			
$A l_2 O_3$	0.37	0.17	0.15	0.16	0.47	0.35	0.14	0.42	0.23	0.17
FeO	0.25	0.32	0.02	0.20	0.51	0.44	0.47	0.49	0.12	0.22
NiO										0.65
MnO				0.03						
MgO										
CaO	54.37	54.57	54.30	55.60	52.64	53.61	53.31	53.60	54.74	55.55
Na ₂ O				0.26				0.35		
K ₂ O			0.03	0.07	0.04	0.08	0.03	0.04		0.06
P_2O_5	42.02	42.52	41.91	41.15	41.43	41.51	41.59	41.90	42.74	41.80
$L a_2 O_3$	0.15	0.62			0.68		0.79		0.67	
Nd_2O_3				0.28					0.29	
$C \: e_2 \: O_3$	0.15	0.21	0.11		0.39		0.39			
CuO					0.17					
Cr_2O_3	0.18	0.11	0.10		0.41	0.21	0. 22	0.13		
V_2O_5								0.03		
$\mathrm{Sm}_2\mathrm{O}_3$					0.32	0.47				
台景	07 48	08 52	06.62	07.76	07 50	06.00	07 24	06.06	00 00	08 45
心里	77.40	76.52	90.02	97.70	97.30	90.99	97.34	90.90	98.80	90.45
<u> </u>	ZN16-11	ZN1612	ZN16-13	ZN 16-14	ZN16-15	ZN16-16	ZN16-17	ZN 16-18	2N 16- 19	ZN16-20
<u>成分</u> TiO ₂	ZN 16-11 0. 17	ZN16-12 0.10	201.02 ZN16-13	ZN 16-14	ZN16-15	ZN1616	ZN16-17	ZN 16-18 0. 28	<u>98.80</u> ZN16-19	ZN16-20
成分 TiO ₂ Al ₂ O ₃	ZN16-11 0. 17 0. 20	ZN 16-12 0. 10 0. 12	ZN16-13	<u>97.76</u> ZN16-14 0.19	ZN16-15	ZN16-16	ZN16-17	ZN 16-18 0. 28	28.80 ZN16-19	2N16-20 0.05
成分 TiO ₂ Al ₂ O ₃ FeO	ZN1611 0.17 0.20 0.35	ZN1612 0.10 0.12 0.39	<u>50. 62</u> ZN16-13 0. 19	<u>97.78</u> ZN16-14 0.19 0.07	<u>97.30</u> ZN16-15 0.09	<u>96.99</u> ZN16-16	<u>97.34</u> ZN16-17	<u>2N 16-18</u> 0. 28	<u>98.80</u> ZN16-19 0.40	98.45 ZN1620 0.05 0.68
成分 TiO ₂ Al ₂ O ₃ FeO NiO	<u>ZN 16 11</u> 0. 17 0. 20 0. 35	J8: 32 ZN 16 12 0. 10 0. 12 0. 39	0. 19 0. 46	0. 19 0. 07	<u>97.30</u> ZN16-15 0.09	<u>90.99</u> ZN1 6 16	<u>97.34</u> ZN16-17	<u>20.30</u> ZN16-18 0.28	<u>98.80</u> ZN16-19 0.40	96.43 ZN 16-20 0.05 0.68 0.32
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO	ZN 16 11 0. 17 0. 20 0. 35	ZN 16 12 0. 10 0. 12 0. 39	0. 19 0. 46	<u>97.76</u> ZN 16-14 0. 19 0. 07	0. 09 0. 15	<u>90.99</u> ZN1616	ZN16-17	<u>90.90</u> ZN16-18 0.28	98.80 ZN16-19 0.40 0.24	0. 05 0. 68 0. 32
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO	ZN 16 11 0. 17 0. 20 0. 35	ZN1612 0.10 0.12 0.39	0. 19 0. 46	2N 16-14 0. 19 0. 07	0. 09 0. 15	<u>30.39</u> ZN1616	<u>71.34</u> ZN16-17	ZN16-18 0.28	<u>98.80</u> ZN16-19 0.40 0.24	0. 05 0. 68 0. 32
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO	ZN 16 11 0. 17 0. 20 0. 35 54. 04	ZN 16 12 0. 10 0. 12 0. 39 54. 00	20. 02 ZN16-13 0. 19 0. 46 54. 00	<u>97.78</u> ZN16-14 0.19 0.07 54.93	<u>97.30</u> ZN16-15 0.09 0.15 54.77	54. 17	53. 01	53. 69	98. 80 ZN 16-19 0. 40 0. 24 53. 17	96.43 ZN 16 20 0.05 0.68 0.32 53.55
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O	ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00	20. 02 ZN16-13 0. 19 0. 46 54. 00 0. 84	<u>54. 93</u> 0. 10	97.30 ZN 16-15 0.09 0.15 54.77 0.19	54. 17	53. 01 0. 81	53. 69 0. 32	9. 80 ZN 16-19 0. 40 0. 24 53. 17 1. 01	96.43 ZN 16 20 0.05 0.68 0.32 53.55
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O K ₂ O	ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00	20. 62 ZN16-13 0. 19 0. 46 54. 00 0. 84 0. 00	97.78 ZN 16-14 0.19 0.07 54.93 0.10 0.00	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07	54. 17 0. 06	53. 01 0. 81	53. 69 0. 32 0. 11	9. 80 ZN 16-19 0. 40 0. 24 53. 17 1. 01 0. 07	96.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14
- 成分 - 成分 - TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅	ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73 41. 63	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00 42. 91	2.02 ZN16-13 0.19 0.46 54.00 0.84 0.00 42.50	97.78 ZN 16-14 0.19 0.07 54.93 0.10 0.00 42.48	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07 42.79	54. 17 0. 06 43. 14	53. 01 0. 81 41. 60	53. 69 0. 32 0. 11 42. 46	9. 80 ZN 16-19 0. 40 0. 24 53. 17 1. 01 0. 07 42. 04	96.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14 41.62
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ La ₂ O ₃	ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73 41. 63 0. 69	J3: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00 42. 91	2. 02 ZN16-13 0. 19 0. 46 54. 00 0. 84 0. 00 42. 50	91. 78 ZN 16-14 0. 19 0. 07 54. 93 0. 10 0. 00 42. 48	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07 42.79 0.28	54. 17 0. 06 43. 14 0. 27	53. 01 0. 81 41. 60 0. 85	53. 69 0. 32 0. 11 42. 46	98.80 ZN 16-19 0.40 0.24 53.17 1.01 0.07 42.04	96.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14 41.62 0.46
- 成分 - 成分 - 可心2 - Al2O3 FeO NiO MnO MgO CaO Na2O K2O P2O5 La2O3 Nd2O3	J. 43 ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73 41. 63 0. 69	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00 42. 91	2.02 ZN16-13 0.19 0.46 54.00 0.84 0.00 42.50	91.78 ZN 16-14 0.19 0.07 54.93 0.10 0.00 42.48	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07 42.79 0.28	54. 17 0. 06 43. 14 0. 27	53. 01 0. 81 41. 60 0. 85	53. 69 0. 32 0. 11 42. 46	98.80 ZN 16-19 0.40 0.24 53.17 1.01 0.07 42.04	96.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14 41.62 0.46
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ La ₂ O ₃ Nd ₂ O ₃ Ce ₂ O ₃	J1. 43 ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73 41. 63 0. 69	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00 42. 91	20. 62 ZN16-13 0. 19 0. 46 54. 00 0. 84 0. 00 42. 50 0. 45	91.78 ZN 16-14 0.19 0.07 54.93 0.10 0.00 42.48	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07 42.79 0.28	54. 17 0. 06 43. 14 0. 27 0. 01	53. 01 0. 81 41. 60 0. 85 0. 81	53. 69 0. 28 53. 69 0. 32 0. 11 42. 46	9. 80 ZN 16 19 0. 40 0. 24 53. 17 1. 01 0. 07 42. 04	96.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14 41.62 0.46 0.09
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ La ₂ O ₃ Nd ₂ O ₃ Ce ₂ O ₃ CuO	J1. 43 ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73 41. 63 0. 69	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00 42. 91	20. 62 ZN16-13 0. 19 0. 46 54. 00 0. 84 0. 00 42. 50 0. 45	91. 78 ZN 16-14 0. 19 0. 07 54. 93 0. 10 0. 00 42. 48	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07 42.79 0.28	54. 17 0. 06 43. 14 0. 27 0. 01	53. 01 0. 81 41. 60 0. 85 0. 81	53. 69 0. 32 0. 11 42. 46	9. 80 ZN 16 19 0. 40 0. 24 53. 17 1. 01 0. 07 42. 04	96.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14 41.62 0.46 0.09
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ La ₂ O ₃ Ce ₂ O ₃ CuO Cr ₂ O ₃	J1. 48 ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73 41. 63 0. 69	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00 42. 91	20. 62 ZN16-13 0. 19 0. 46 54. 00 0. 84 0. 00 42. 50 0. 45 0. 14	97.78 ZN 16-14 0.19 0.07 54.93 0.10 0.00 42.48	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07 42.79 0.28 0.11	54. 17 0. 06 43. 14 0. 27 0. 01 0. 14	53. 01 0. 81 41. 60 0. 85 0. 81 0. 27	53. 69 0. 32 0. 11 42. 46	98.80 ZN 16-19 0.40 0.24 53.17 1.01 0.07 42.04	96.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14 41.62 0.46 0.09
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ La ₂ O ₃ Nd ₂ O ₃ Ce ₂ O ₃ CuO Cr ₂ O ₃ V ₂ O ₅	J1. 48 ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73 41. 63 0. 69 0. 08	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00 42. 91 0. 15	20. 62 ZN16-13 0. 19 0. 46 54. 00 0. 84 0. 00 42. 50 0. 45 0. 14 0. 07	97.78 ZN 16-14 0.19 0.07 54.93 0.10 0.00 42.48 0.05	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07 42.79 0.28 0.11	54. 17 0. 06 43. 14 0. 27 0. 01 0. 14 0. 12	53. 01 0. 81 41. 60 0. 85 0. 81 0. 27	53. 69 0. 32 0. 11 42. 46	9. 80 ZN 16 19 0. 40 0. 24 53. 17 1. 01 0. 07 42. 04 0. 05	96.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14 41.62 0.46 0.09 0.08
成分 TiO ₂ Al ₂ O ₃ FeO NiO MnO MgO CaO Na ₂ O K ₂ O P ₂ O ₅ La ₂ O ₃ Nd ₂ O ₃ Ce ₂ O ₃ CuO Cr ₂ O ₃ V ₂ O ₅ Sm ₂ O ₃	J1. 48 ZN 16 11 0. 17 0. 20 0. 35 54. 04 0. 73 41. 63 0. 69 0. 08 0. 33	J8: 32 ZN 16 12 0. 10 0. 12 0. 39 54. 00 42. 91 0. 15	2. 02 ZN16-13 0. 19 0. 46 54. 00 0. 84 0. 00 42. 50 0. 45 0. 14 0. 07	91.78 ZN 16-14 0.19 0.07 54.93 0.10 0.00 42.48 0.05	97.30 ZN 16-15 0.09 0.15 54.77 0.19 0.07 42.79 0.28	54. 17 0. 06 43. 14 0. 27 0. 01 0. 14 0. 12 0. 12	53. 01 0. 81 41. 60 0. 85 0. 81 0. 27 0. 37	53. 69 0. 32 0. 11 42. 46 0. 34	98.80 ZN 16-19 0.40 0.24 53.17 1.01 0.07 42.04	98.43 ZN 16 20 0.05 0.68 0.32 53.55 0.14 41.62 0.46 0.09 0.08

测试单位:中国地质大学(北京)地质实验中心电子探针室(2003)。

仪器型号: EPM A-1600 电子探针仪,实验条件 15 KV, 7 n A, 束斑大小为 1 μm。

3 成因分析

(1) 一般认为, 在湘黔地区寒武纪浅海陆棚相沉 积区域, 近海区域底流水盆地内的受限循环水体伴 随着丰富的有机质的腐败, 产生了一个无氧环境, 细 菌释放 PO^{3-} , NH^{1} 和 HS^{-} 。在有些地点 pH 值高 (7.2~9), 将有助于从沉积物中将 Si 活化出来, 在 接近 NH^{1} / NO^{3} 氧化还原界面的深度(可能接近沉 积物/水的界面), pH 值降为 6~7.5。从碱性环境 向弱酸性环境转变,细晶磷灰石开始沉积,有时伴随 着石英的沉积,当有机物被交代时,微细的微体化石 结构通常被保存下来。

(2)磷结核从边部到中心的贵金属元素的变化 趋势,说明铂族元素的超常富集只能归因于携带海 底岩石物质的热水作用^[4]。

(3)结核的剖面成分分析显示存在着单核或双 核沉积中心,结核的内部构造类型为不规则纹层状, 反映底流水体相对均一的动态振荡,生物化学沉积 环境的持续稳定^[8]。

	晶体化学式	A 1	A 2
ZN161-1	$(Ca_{5.092}Al_{0.058}Fe_{0.029}Cr_{0.013}La_{0.005}Ce_{0.005})_{5.1\&}P_{3.109}O_{12}(OH)$	1.09	6. 378
ZN161-2	$(Ca_{5.063}Fe_{047}^{3+}Al_{0017}^{3+}La_{0.020}^{3+}Ce_{0.007}^{3+}){}_{5.154}P_{3.117}O_{12}(OH)$	1.17	6.243
ZN161-3	$(Ca_{5,131}Al_{0016}Cr_{0007}Fe_{0.003}Ce_{0003}K_{0003})_{5,163}P_{3,129}O_{12}(OH)$	1.29	6. 398
ZN161-4	$(Ca_{5.234}Na_{0.042}Fe_{0.030}Al_{0.017}Nd_{0.008}K_{0.007}){}_{5.338}P_{3.061}O_{12}(OH)$	0.61	7.099
ZN161-5	$(Ca_{4.925}Fe_{0.075}Al_{0.048}Ti_{0.029}Cr_{0.028}La_{0.021}Cu_{0.011}Ce_{0.011}Sm_{0.009}){}_{5.167}P_{3.07}O_{12}(OH)$	0.7	6.075
ZN161-6	$(Ca_{5.047}Fe_{0.063}Al_{0.036}Ti_{0.022}Cr_{0.013}Sm_{0.011}K_{0.009}){}_{5.201}P_{3.088}O_{12}(OH)$	0.88	6.344
ZN161-7	$(Ca_{5,014}Fe_{0069}Ti_{0,028}La_{0,025}Al_{0,015}Ce_{0013}K_{0,008})_{5,167}P_{3,091}O_{12}(OH)$	0. 91	6.221
ZN161-8	$(Ca_{5.023}F_{0.072}Na_{0.059}Al_{0.043}Cr_{0.010}K_{0.004}V_{0.002}){}_{5.213}P_{3.102}O_{12}(OH)$	1.02	6. 193
ZN161-9	$(Ca_{5.071}Al_{0.024}La_{0.022}Fe_{0.018}Sm_{0.008})_{5.143}P_{3.128}O_{12}(OH)$	1.28	6.212
ZN16-1-10	$(Ca_{5.178}Ni_{0.047}Fe_{0.032}Al_{0.018}K_{0.006}){}_{5.281}P_{3.079}O_{12}(OH)$	0. 79	3.662
ZN16-2-1	$(Ca_{5.\ 057}Na_{0.1234}Fe_{0.052}Al_{0.021}La_{0.021}Ti_{0.\ 010}Sm_{0.\ 009}V_{0.\ 004})_{5.\ 277}P_{3.\ 056}O_{12}(OH)$	0.66	6. 429
ZN16-2-2	$(Ca_{4.976}Na_{0.147}Al_{0.012}Fe_{0.056}V_{0.008}Ti_{0.00}7){}_{5.206}P_{3.125}O_{12}(OH)$	1.25	5.923
ZN16-2-3	$(Ca_{5.026}Na_{0.142}Fe_{0.031}Ni_{0.031}Ce_{0.010}Cr_{0.009}V_{0.004})5.253P_{3.125}O_{12}(OH)$	1.25	5.026
ZN16-2-4	$(Ca_{5.118}Na_{0.021}Al_{0.021}Fe_{0.010}Cr_{0.003}){}_{5.173}P_{3.128}O_{12}(OH)$	1.28	6.362
ZN16-2-5	$(Ca_{5.081}Na_{0.031}Fe_{0.014}Mn_{0011}K_{0.009}La_{0.009}Cr_{0007}){}_{5.162}P_{3.162}O_{12}(OH)$	1.62	6.069
ZN16-2-6	$(Ca_{5.031}Cr_{0.009}La_{0.008}V_{0.007}K_{0.007}Sm_{0.004}Ce_{0.003})_{5.0627}P_{3.166}O_{12}(OH)$	1.66	5.891
ZN16-2-7	$(Ca_{5,018}Na_{0,138}La_{0,032}Ce_{0,027}Cr_{0,019}Sm_{0,012})_{5,246}P_{3,112}O_{12}(OH)$	1.12	6. 125
ZN16-2-8	$(Ca_{5.039}Na_{0.055}Ti_{0.021}Sm_{0.011}K_{0.011})_{5.137}P_{3.148}O_{12}(OH)$	1.48	6.007
ZN16-2-9	$(Ca_{4.987}Na_{0171}Fe_{0.059}Sm_{0018}Mn_{0.016}K_{0007}V_{0001})_{5.259}P_{3.114}O_{12}(OH)$	1.14	6.015
ZN16-2-10	$(Ca_{5,\ 042}Fe_{0,\ 095}Ni_{0,\ 023}K_{0,\ 016}La_{0,\ 015}V_{0,\ 004}Ce_{0,\ 003})_{5,\ 198}P_{3,\ 096}O_{12}(OH)$	0.96	6.286

表 2 磷结核中磷灰石的晶体化学数据 Table 2 The crystal formula data of minerals in the phosphate nodules from Guizhou Province

注: A1 为(P-3) × 10 的计算值, A2 为(Ca/P-1) × 10 的计算值。

表 3 磷结核中贵金属元素分析结果

Table 3 The noble metal element analysis of the phosphate nodule

公长顶日		DS14		ZT05			
万机项目 —	核部	边缘	页岩(2)	核部	边缘	页岩(2)	
Os	0.010	0.010	0.052	0.064	0.031	0.140	
Ru	0.003	0.001	0.003	0.037	1.240	0.040	
Rh	0.001	0.001	0.003	0.005	0.009	0.014	
Ir	0.006	0.005	0.002	0.006	0.100	0.043	
Pt	0.015	0.019	0.045	0.058	0.180	0.240	
Pd	0.015	0.036	0.100	0.046	0.340	0.380	
Au	0.0467		0.171	0.109	0.174	0.349	
Ag	2.47		10. 2	27.9	56.7	97.6	
PGE	0.050	0.072	0.203	0.216	1.900	0.856	
Pd/Pt	1.00	1.89	2. 22	0.79	1.89	1.58	
T D/ SU HR	1.50	3.24	2.50	0.93	0.38	2.62	
Ag/Au	52.89		59.65	255.96	325.86	279.66	

注: PGE. 铂族元素; TD. Pt, Pd; SU HR. Os, Ru, Rh, Ir; TD/SUHR. (Pt+Pd)/(Os+Ru+Rh+Ir)。

资料来源:李胜荣(1994);量的单位:w_B/10-6。

(4) 从磷灰石的 Ca/P 比值平均为 1.605 可以看出, 比羟磷灰石的理论值(1.667) 略低, 也比现代生物磷灰石(1.649~1.665) 略低, 而比碳氟磷灰石

(2.99)更低,说明磷结核中磷灰石类型为羟磷灰石, 成因类型应为生物化学沉积型。

(5)上世纪70年代便开始流行磷块岩的风暴成 因说,而一般而言在海水中磷结核生长的充分条件 是底层流的发育和活动。结核和内部的生长间断构 造则主要与底层流活动减弱有关。在全球气候变暖 期,底流活动减弱,环境缺氧,结核不能发育生长。 底层流的发育及强度是控制磷结核生长的根本因 素。

致谢:在本文写作过程中,曾得到中国地质调查 局发展研究中心情报室主任施俊法研究员提供的帮助,在此表示感谢!

参考文献:

- [1] 范德廉, 叶杰, 杨瑞英, 等. 扬子地台前寒武/ 寒武纪界线的地质 事件与成矿作用[J]. 沉积学报, 1987, 5(3): 81-95.
- [2] 李胜荣. 湘黔地区下寒武统黑色岩系金银铂族元素地球化学研

究(博士后论文)[D].贵阳:中国科学院地球化学研究所, 1994.

- [3] 李胜荣,高振敏. 黑色岩系中铂族元素地质地球化学研究概况 及其意义[J]. 1994, (4): 45-49.
- [4] 李胜荣,肖启云,申俊峰,等.湘黔下寒武统铂族元素来源与矿化年龄的 Re-Os 同位素制约[J].中国科学(D辑),2002,32
 (7):568-575.
- [5] 高计元, 孙枢, 许靖华, 等. 碳氧同位素与前寒武纪和寒武纪边 界事件[J]. 地球化学, 1988, (3): 257-266.
- [6] 毛景文,张光弟,杜安道,等.遵义黄家湾镍钼铂族元素矿床地质、地球化学和 Re Os 同位素年龄测定[J].地质学报,2001,75
 (1):234-241.
- [7] 张光弟,李九玲,熊群尧,等.贵州遵义黑色页岩铂族元素金属 富集特点及富集模式[J],矿床地质,2002,21(4):377-385.
- [8] 江永宏. 湘、黔下寒武统黑色岩系富贵金属镍钼矿床成因矿物学(博士论文)[D]. 北京:中国地质大学, 2004.
- [9] 杨卫东,肖金凯,于炳松,等. 滇黔磷块岩沉积学、地球化学与 可持续发展战略[M].北京:地质出版社,1997.
- [10] 周玲利, 刘永康, 周国富. 现代生物磷灰石及化石磷灰石研究[J], 矿物学报, 1999, 19(1): 41-47.

- [11] Coveney Jr R M, Murowchick J B, Grauch R I, et al. Field relations, origins and resource implications for platifeous molybdenum-nickel ores in black shales, South China[J]. Exploration and Mining Geology, 1992, (1): 21-28.
- [12] Keays R R, Nickel E H, Groves D I, et al. Iridium and palladium as discriminants of volcanie-exhalative, hydrothermal,

and magnetic nickel sulfide mineralization [J]. Economical Geology, 1982, 77: 1535-1547.

[13] William F Rowell, Alan D Edgar. Platinum-group element mineralization in a hydrothermal Cu-Ni sulfide occurrence, Rathbun Lake, northeastern Ontario[J]. Economic Geology, 1986, 81: 1272-1277.

PRELIMINARY STUDY ON COMPOSITION OF PHOSPHATE NODULE IN LOWER CAMBRIAN BLACK-ROCK-SERIES-HOSTED N⊨Mo DEPOSITS IN HUNAN GUIZHOU AREA

JIANG Yong-hong

(The Development and Research Center of China Geological Survey, Beijing 100037, China)

Abstract: Composition of phosphate nodule in Lower Cambrian black-rock-series-hosted Ni-Mo deposits in Hunan-Guizhou area is analyzed by electronic probe. Analytical result of twenty apatite samples shows Ca/P ratio in range of 1.36~ 1.710 and the average of 1.605 and the apatite belongs to bio-chemically deposited hydroxylapatite. Content of Na⁺, Fe²⁺, Al³⁺, La³⁺, Sm³⁺, Ce⁺, Cr³⁺, Ti⁴⁺ is relatively higher in the nodule with various element combinations, such as Na⁺ and LREE. On the 1/4 cross section of the phosphate nodule, two nucleis and single nuclei of sedimentary center exist with irregular lamina strueture. From the rim to the center of the phosphate nodule parameter of the relative active noble metal elements and relative inert (Pd/Pt, Ag/Au, TD/SUHR) change in the same tendency. In the outer layer are the relative active elements and toward to the center the relative inert. Some relatively active elements (Pt, Pd, Ag) mobile toward the outer layer. The abnomal enrichment of PGE is attributed to the hot water transportation of rock materials at the sea floor.

Key Words: Hunan and Guizhou area; phosphate nodule; hydroxylapatite; noble metal; biochemistry deposition