黑龙江尚志黑龙宫铜矿点[®] 氢同位素勘查找矿

刘敬秀 张理刚 于桂香

(中国地质科学院宜昌地质矿产研究所,湖北宜昌,443003)

提 要 黑龙江黑龙宫地区地表 43 个不同性质蚀变岩石 δ¹⁸O 值从-2.2%到 11.5%, 勾画出一个 中心高¹⁸O 带和周围低¹⁸O 带。结合该地区地质特征以及已知氧同位素勘查模型,推断黑龙宫地区 具三层圈¹⁸O 带多中心水-岩交换的成矿地区,隐伏矿体可能位于中心高¹⁸O 带。 **关键词** 氧同位素勘查 高¹⁸O 带中心 黑龙宫 黑龙江

1 序

自 60 年代末至 70 年代初,以 Taylor 为首的一批师生对美国许多矿床及岩浆岩进行大量 氢氧同位素地球化学研究,定量论证大气降水在成矿作用的主导地位以及提出低¹⁸O 中心即 是成矿活动作用中心以来,取得了一系列令人瞩目的进展(Taylor, 1968, 1974, 1977; Criss 等,1986; Shappard, 1969,1974,1986)。在我国,80 年代以张理刚为首的研究小组,在大量氢 氧同位素地球化学研究基础上,先后勾画出中国现代及中生代大气降水氢氧同位素变化等值 线图和划出三大类大气降水热液矿床(张理刚,1985,1989);进入 90 年代,该小组又对我国东 部大范围内众多类型近 20 余个矿床进行氢氧同位素勘查地球化学研究,根据新测定近 2000 个数据,不仅提出了缓冲开放体系两阶段大气降水-岩石交换成矿作用新理论(张理刚等, 1994b,1995a、b、c),而且首先提出了三种氧同位素勘查模型(张理刚等,1993a,1994a;1995c). 本文即是根据有关氧同位素勘查模型,对黑龙江尚志黑龙宫地区进行矿体定位预测研究。黑龙 江地勘部门自 1966 年发现尚志黑龙宫铜矿点五星屯南山铜矿化脉,曾先后 4 次(1966、1968、 1974~1975 和 1977~1978)对该区进行找矿工作,投入不同程度地质、物化探和钻探工作(图 1)。先后竣工 26 个钻孔,总进尺 7877.69m,通过深部评价,除五星屯南山 7511 孔偶见含铜砂 卡岩,最高铜品位达 0.69%,其余均未发现铜的富集地段。那么,黑龙宫铜矿点区域究竟是否

① 收稿日期 1995.3.24 改回日期 1995.5.25

有找矿前景呢?或者说,是否有隐伏的工业铜矿体存在呢?如果肯定,那又在何处呢?前人 26 个钻孔布孔位置是否合理?等等。

2 分析方法及精度

野外地质调查的同时,采集地表岩石样品(图 1)。岩石的 δ¹⁸O 值采用常规 BrF₅ 法进行测定,但与 Clayton 等(1963)的实验流程有较多的改进,包括不用托氏泵,采用电炉外加热把 O₂ 转化为 CO₂,用真空法判别 O₂ 是否定量转化为 CO₂。用平衡扩散大部分 O₂ 转化为 CO₂ 等。

制备好的 CO₂ 在 MAT—251 质谱计上测定¹⁸O/¹⁶O 比值。氧同位素采用国家标准 GB-WO4409 和 GBW04410 两种石英,前者 δ¹⁸O_{SMOW}=11.11‰,后者为-1.75‰,它们分别用 V-SMOW 和 SLAP 标定,并标出 NBS—28 的 δ¹⁸O 值为 9.59‰。氧同位素报导值以相对 SMOW 千分偏差表示。

1. 下泥盆~下二叠统
 2. 中侏罗世早期火山岩
 3. 中侏罗世晚期火山岩
 4. 海西期花岗岩
 5. 印支期早期花岗闪长
 岩
 7. 前人打钻孔位
 8. 采样点(表1 中顺号)

图 1 黑龙江尚志黑龙宫铜矿点地质略图

Fig. 1 Geological map of Heilonggong copper occurrance Shanzhi county, Heilongjiang

根据多年分析测定,测定 δ¹⁸O 值的精度,对全岩样品通常优于 0.30%,部分优于 0.2‰, 对单矿物样品通常优于 0.25%。

氧同位素找矿勘查模型 3

水-岩体系氧(氢)同位素相互交换作 用不仅是氢氧同位素地球化学研究的基 础,而且是研究热液矿床最有效的研究手 段和方法之一,它不仅可以示踪水的来源 及其演化,而且可以揭示出水-岩体系蚀变 岩石的氧(氢)同位素组成变化规律。根据 缓冲开放体系两阶段水-岩交换模式,水-岩相互作用后蚀变岩石的 &² 值取决于原 始水(dw)以及演化(再平衡)水 dw 和主岩 的 ♂值,以及两个阶段有效同位素 W/R 比值大小和温度变化,因而,出现了不同类 型矿床之间有复杂的蚀变岩石 δ¹⁸O 值变 化规律。由于相同类型矿床之间有相似的 形成地质条件,因而每一类型矿床蚀变岩 石三维空间 ∂¹⁸O 值变化还是有一定规律 的。据此,可利用这种规律作为找矿勘查最 有效的方法之一。张理刚等(1993a,1994a, 1995c)对中国东部其它热液矿床水-岩体 系氢氧同位素研究成果,已总结出三种典 型的氧同位素找矿勘查模式:

3.1 低¹⁸O 中心找矿勘查模型

该模式的矿床多属与火山喷发活动有 关的脉状矿床,且赋存于火山口和隐伏次 火山岩周围的断裂体系中。不论是地表还 是剖面深部,低¹⁸O中心即是水-岩交换中 图2 内蒙古额仁陶勒盖银矿地表岩石 8¹⁸O 值变化与矿 心,即是成矿活动中心,如额仁陶勒盖银 矿、白乃庙金矿、两河金矿、西吉诺山金矿 Fig. 2 床(点)(图 2)。该类矿床成矿热液储库形 成阶段有效 W/R 比值一般在 0.5 以上。

3.2 高¹⁸O 中心找矿勘查模型

该模式的矿床多为次火山岩断裂破碎带或花岗岩(变质岩)糜梭岩带(细脉)浸染状矿床, 少数大脉状矿床,多为金、银、铅、锌矿床,伴随硅化、绢英岩化及青盘岩化、泥化等。该模式显示 出地表矿化中心为高¹⁸O 特征(图 3),即地表及浅部蚀变岩石的 8¹⁸O 值高于主岩原岩¹⁸O 值。

体位置关系(据张理刚等,1994C)

该类矿床成矿热液储库形成阶段有效 W/R 比值一般低于 0.1。包括的矿床如冷水坑、银山、团结沟和焦家式台上、苍上、大尹格庄、焦家、红布等矿床和部分脉状邓格庄、金青顶金矿床等。

1. 花岗闪长斑岩 2. 元古代片岩 3. 采样点及 d¹⁸O 值 4. 矿体边界 5. 地质不整台界线 6. 等值线及 d¹⁸O 值 7. ZK241 孔 8. 水岩交换中心及可能隐伏矿体延伸位置

图 3 团结沟金矿东露天采场全岩氧同位素等值线及矿体位置关系(据张理刚等,1993a)

Fig. 3 The correlations between O isotopic compositions of altered rocks and ore body location from the eastern openit Workings, the Tuanjiegou gold deposit (after Zhang et al. 1993a)

3.3 高¹⁸O-低¹⁸O-高¹⁸O 找矿勘查模型

真正的斑岩型铜(钼)矿床如多宝山、廿一站、铜厂等矿床属于该模式,不论是地表平面上, 还是剖面上,蚀变体系岩石显示出中心高¹⁸O带,向外过渡低¹⁸O带,再向外为高¹⁸O带,主要工 业铜矿化位于中心高¹⁸O带内及边部(图 4),而低¹⁸O带为中低温脉状、铅、锌、金矿化带("卫 星"矿化),再向外高¹⁸O带为无矿化带地段。

值得指出的是,上述三种模型是以大气降水成矿理论为前提,不管是哪种模型的矿床,它 们深部即矿体尾部蚀变岩石 δ¹⁸O 值均显示降低(张理刚等,1995b,1995c)。因此,研究出现低¹⁸ O 中心时,还应考虑剥蚀深度条件。

已知上述三种蚀变岩石氧同位素找矿勘查模型基础上,就有可能对化探异常区、矿点及前 人勘查后放弃的矿点进行氧同位素找矿勘查预测及再评价研究。下面就黑龙江尚志黑龙宫等 矿点的氧同位素找矿勘查预测研究结果,作如下介绍。

4. 地质背景

黑龙宫铜多金属矿点位于尚志县境内,公路通过黑龙宫乡(图1),矿点位于西侧翻身屯至

1. 中奧陶统铜山组 2. 中奧陶统多宝山组 3. 花岗闪长岩 4. 花岗斑岩 5. 样品位置及 δ¹⁸O 值 6. δ¹⁸O 值等值线 7. 地表及隐伏铜矿体位置,位于地表高¹⁸O 带中心附近

图 4 黑龙江铜山铜矿地质略图及地表蚀变岩石氧同位素等值线(据张理刚等,1995c)

Fig. 4 Geological map and O isotope contour of surface rocks of Tongshan copper deposit,Heilongjiang 五星屯一带。

黑龙宫铜矿点区域内基底为下泥盆统、下二叠统和中侏罗统浅变质火山岩及沉积岩。上黑 龙宫组,分布于炮台山、保安屯一带。以强蚀变的安山玢岩及其凝灰岩为主,夹正常沉积岩。该 层中见有后期形成的含铜石英脉。下泥盆统下黑龙宫组包括有砂质板岩、大理岩等。中侏罗统 太安屯组西部较广泛,为灰绿色-暗绿色安山玢岩。英安质凝灰岩,流纹质凝灰角砾岩、流纹斑 岩以及英安质晶屑凝灰岩。

海西晚期白岗质花岗岩和燕山期花岗闪长岩在区内均有出露。后者分布于南部即五星屯 以南,前者出露在北部及东南角(图1)。与此相伴出现一些浅-超浅成中酸性小侵入体群,包括 次闪长玢岩、次安山玢岩、花岗斑岩、石英斑岩、斜长斑岩等。它们均受不同程度的蚀变和矿化。 蚀变作用以绿泥石、绿帘石化为主,其次为硅化、绢云母化。但局部地段受强构造破碎挤压作用 影响,形成绢云母石英岩。

矿化作用较普遍,次火山岩-闪长玢岩中有时能见到孔雀石、蓝铜矿及石英细脉。在炮台山 片理化安山玢岩中,见有含铜石英脉,长100m,宽1m左右,有黄铜矿及表生矿物,但品位低。 60

5 蚀变岩石氧同位素组成变化规律及其找矿意义

表 1 中列出了黑龙宫铜矿点地表 43 个多种蚀变岩石及花岗岩的 δ¹⁸O 值,其采样位置见 图 1 和 5。42 个全岩 δ¹⁸O 值可从-2.2‰到 11.5‰之间变化,如果将它们投影到图 5 中,便可 画出一个类似斑岩铜矿的三层圈 δ¹⁸O 等值线,即中心高¹⁸O 带,7 个样品变化从 5.6‰到 11.1‰之间(图中画出了 δ¹⁸O 值高于 8‰的 1 个等值线范围),而在它的北面出现一个 0‰到 -2‰的等值线,西面有 1 个样品(21 号)也低达 0‰左右,除此之外,围绕这个中心高¹⁸O 带蚀 变岩石的 δ¹⁸O 值在 3‰到 5‰之间的低¹⁸O 带,已知一条含铜石英脉即位于该带范围内。再向 外则又有增高趋势。

1. 前人打孔位置 2. 地表采样点位 3. 优先勘查区 4. δ¹⁸O 值等值线

图 5 黑龙江尚志黑龙宫铜矿点氧同位素等值线及优先找矿勘查区

Fig. 5 δ¹⁸O contour and the preferring prospects heilonggong copper prospecting, Shanzhi Count, Heilongjing

表」 羔龙宫铜矿化点蚀变岩石氧间位素组成

 Table 1
 O isotope composition of altered rocks in Cu Ore occurrances, Heilonggong, Heilongjiang

顺序	样号	岩性	样品	δ ¹⁸ Ο (%)	顺序	样号	岩 性	样品	δ ¹⁸ Ο (‰)
1	区 02	绿泥石化闪长玢岩	全岩	3. 5	23	H 34	石英斑岩	全岩	5 . 2
2	H02	蚀变安山凝灰岩	全岩	3.1	24	H 35	片理化安山岩	全岩	4.3
3	H 03	流纹岩	全岩	8.7	25	H36	片理化安山岩	全岩	4.0
4	H04	安山岩	全岩	6.5	26	H37	片理化安山岩	全岩	4.1
5	H05	硅化安山岩	全岩	4.4	27	H38	片理化安山岩	全岩	5.4
6	H06	石英细脉	石英	0.8	28	H39	片理化安山岩	全岩	8.9
7	H 06	硅化闪长玢岩	全岩	- 2. 2	29	H24	绢云母石英岩	全岩	6.4
8	H08	硅化闪长玢岩	全岩	1.4	30	H27	绿泥石化安山岩	全岩	7.4
9	H09	硅化闪长玢岩	全岩	0.0	31	H28	绿泥石化安山岩	全岩	10.5
10	H10	硅化闪长玢岩	全岩	-1.1	32	H29	黑云母花岗岩	全岩	6.3
11	H 11	硅化闪长玢岩	全岩	1.3	33	H33	黑云母花岗岩	全岩	11.5
12	H12	绿泥石化安山熔岩	全岩	2.5	34	H41	片理化安山岩	全岩	10.7
13	H13	绿泥石化闪长玢岩	全岩	0.0	35	H42	片理化安山岩	全岩	6.3
14	H14	硅化安山岩	全岩	0.3	36	H43	片理化安山岩	全岩	5.6
15	H15	硅化安山岩	全岩	4.3	37	H44	硅化安山岩	全岩	3.6
16	H16	安山质凝灰岩	全岩	5.2	38	H46	硅化安山岩	全岩	5.0
17	H17	硅化闪长玢岩	全岩	3.9	39	H48	硅化安山岩	全岩	5.1
18	H18	绿泥石化闪长玢岩	全岩	5.9	40	区 01	青盘岩化安山岩	全岩	1.0
19	H19	硅化闪长玢岩	全岩	9.5	41	区 03	青盘岩化安山岩	全岩	2.1
20	H20	硅化闪长玢岩	全岩	11.1	42	区 04	青盘岩化安山岩	全岩	2.1
21	H22	绢云母石英岩	全岩	0.0	43	区 05	青盘岩化安山岩	全岩	1.7
22	H23	片理化安山岩	全岩	7.2					

黑龙宫铜矿点地表蚀变岩石 δ¹⁸O 值表明,该矿点有可能是一个类似斑岩型矿床水-岩相 互作用体系。如果这一推断合理,那么前人已施工的 26 个钻孔几乎均分布在该中心高¹⁸O 带 外围或边部低¹⁸O 带内。然而,黑龙宫铜矿点最有远景的斑岩铜矿化地段中心最高¹⁸O 地段内, 即表 1 和图 4 中 19、20 号样硅化闪长玢岩附近,却没有打钻孔。在该高¹⁸O 中心向北 800m(中 间为农田)出现一个 0‰到-2‰的低¹⁸O 中心,该中心为青磐岩化、硅化闪长玢岩,并有石英细脉,一个石英的 δ¹⁸O 值低达 0.8‰(6 号),表明是一个大气降水-岩石交换活动中心,有可能存 在"卫星"矿体。,但该中心也没有打钻孔。因而也是值得考虑进行深部验证。

6 结论

黑龙宫铜矿点前人虽进行过较详细普查和钻探找矿工作,但是,从氧同位素找矿勘查模型 所反映出水-岩相互作用规律来看,有可能是一个斑岩型(矽卡岩型)铜矿远景区,其最有远景 铜矿化地段应该在图5中中心高¹⁸O带硅化闪长玢岩边部以及它的北部低¹⁸O带部位。亦即主 矿化可能位于中心高¹⁸O带与东部黑龙宫组接触带附近构成斑岩-矽卡岩型铜矿体。图5中勾 出了2个优先找矿勘查区。

参考文献

- 1 张理刚,稳定同位素在地质科学中应用,陕西省科学出版社,1985
- 2 张理刚,成岩成矿理论及找矿,北京工业大学出版社,1989
- 3 张理刚,陈振胜,刘敬秀,于桂香.大型、超大型铜、贵金属矿床水-岩体系氧同位素勘查模式(第五届全国矿床会议 论文集).地质出版社,1993
- 4 张理刚,陈振胜,刘敬秀,于桂香.氧同位素勘查模型(第五届全国同位素地质会议论文集), 地震出版社,1994
- 5 张理刚,陈振胜,刘敬秀,于桂香,等。胶东焦家式金矿水-岩交换作用-成矿流体氢氧同位素组成研究,矿床地质, 1994,13(3):193~200
- 6 张理刚,陈振胜,王可法,刘敬秀,于桂香,内蒙古额仁陶勒盖银矿水-岩相互作用及矿石沉淀氢氧同位素研究,地 球学报,1994,30~31(1~2):131~137
- 7 张理刚,陈振胜,刘敬秀,于桂香,等.胶东焦家式金矿水-岩交换作用-蚀变岩石氢氧同位素研究.矿床地质,1995, 14(3)(印刷中)
- 8 张理刚,刘敬秀,于桂香.超大型铜厂铜矿水-岩交换作用研究.地质科学(印刷中),1995
- 9 张理刚,陈振胜,刘敬秀,于桂香,等.两阶段水-岩同位素交换理论及其勘查应用.地质出版社(出版中),1995
- 10 张理刚,刘敬秀,于桂香,江西银山铜铅锌银矿床水-岩交换作用氢氧同位素研究,地质学报(印刷中),1995
- 11 Criss R E. Taylor h p Jr. Meteoric-hydrothermal systems. Reviews in mineralogy, 1986,16:373~422
- 12 Sheppard S M F, Nielesen R L and Taylor H P Jr. Oxygen and hydrogence isotope ratios of clay minerals from porphyry copper deposits. Econ. Geol. 1969, (64):755~777
- 13 Sheppard S M F, Taylor H P Jr. Hydrogen and oxygen isotope evidence for the origins of water in the Boulder Bathoilth and the Butte ore deposits, Montana. Econ Geol, 1974, (69):926~946
- 14 Sheppard S M F. Characterization and isotopic variations in natural waters. Reviews in mineralogy, 1986, 16:165~ 185
- 15 Taylor H P Jr. The oxygen 150tope geochemistry of 1gneous rocks. Contrib Mineral. Petrol, 1968, (19):1~17
- 16 Taylor H P Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothemal alteration and ore deposition. Econ. Geol., 1974,(69):843~883
- 17 Taylor H P Jr. Water/rock interactions and the origin of H_2O in granitic batholiths. J. Geol. Soc. , London, 1977, (133):509~558

Cu-ORE PROSPECTING BY O ISOTOPE COMPOSITION SHANGZHI COUNT, HEILONGJIANG

Liu Jingxiu Zhang Ligang Yu Guixiang

(Yichang Institute of Geology and Mineral Resource, CAGS, Yichang, Hubei 443003)

Abstract

A systematic 2-dimentional mapping of oxygen isotope compositions have been carried out for the altered wall-rocks of Heilonggong copper prospect, Shanzhi Count, Heilongjiang, and a high-low-high δ^{18} O system has been discriminated indicating the Heilonggong copper prospect as a high-low-high δ^{18} O system of porphyry or (and) skarn type Cu/Mo (zhang et al, 1993a, 1994a, 1995c). The best prospecting area should be the central high-¹⁸O scope and the contact zone of in the eastern part. A NE trend low-¹⁸O zone ($\delta^{18}O = 0 \sim 2\%_0$) in the north-west is the second best area.