43

滇西北宁蒗地区树扎-树劳河一带[®] 华力西期基性喷出岩系含矿性研究

胡受权 郭文平

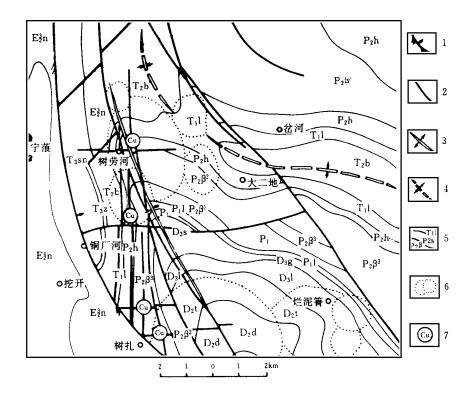
(成都理工学院,成都,610059) (四川盐业地质钻井大队,自贡,643000)

提 要 研究区华力西期基性喷出岩系具明显的旋回性和韵律性,属滨一浅海相喷发-沉积环境。随着区内华力西期基性岩浆演化分异作用的进行,其含矿性(铜、铅、锌等)呈现递增的变化规律。第 \mathbb{I} 、 \mathbb{I} 旋回玄武岩系(P_{zp} 和 P_{2h})是区内重要的矿源层和赋矿层位。

关键词 宁蒗地区 华力西期 基性喷出岩系 含矿性

0 引 言

滇西北宁蒗地区树扎-树劳河一带华力西期基性岩浆喷发于晚二叠世,活动时间长,喷发强度大,分布范围广,构成本区具一定含矿性的上二叠统玄武岩组 $(P_2\beta)$ 和黑泥哨组 (P_2h) 两套玄武岩系,为区内喜山期斑岩体外接触带的热液型铜矿带(树扎-树劳河铜矿带)的形成提供了重要的物质基础。


树扎-铜厂河-树劳河铜矿带系区内喜山期斑岩体外接触带玄武岩系中的矿产,分布于本区近南北向主干断裂(包都-波罗断裂)弧形西凸的内凹部位(图 1),总体呈南北向展布,矿化均产于华力西期基性喷出岩系中,即 $P_2\beta$ 与 P_2h 地层中。因此,对其含矿性的分析探讨,具有一定的找矿勘探意义。

1 华力西期基性喷出岩系基本特征

1.1 玄武岩系主要岩石类型

区内玄武岩系主要由致密状玄武岩、杏仁状玄武岩、气孔状玄武岩、斜斑玄武岩等岩石类

① 收稿日期 1995.3.15 改回日期 1995.5.16

1. 主干断裂(压扭性) 2. 次级断裂 3. 背斜 4. 向斜 5. 地层界线与地层代号 6. 喜山期斑岩体 7. 铜矿图 1 树扎-树劳河斑岩外接触带玄武岩系中热液型铜矿带地质图

(据胡受权,1991,云南宁蒗地区喜山期斑岩成矿带构造控岩控矿特征(硕士论文))

Fig. 1 Geological map of hydrothermal copper ore belt in basalt formation of outer porphyry contact from Shuza to Shulaohe

型组成,并分别含有自然铜、硅孔雀石等铜矿物。

- 1.1.1 **致密状玄武岩** 暗灰、棕灰、深灰色,致密块状,填间结构(图 2)、间隐结构(图 3)、斑状结构。普遍含有浸染状、星点状自然铜,尤其黑泥哨组上部层位的致密状玄武岩中,铜含量明显高于其下各层位的同类岩石。致密状玄武岩是自然铜产出的主要岩石类型。
- 1.1.2 **杏仁状玄武岩** 灰色、深灰色、灰绿色等,杏仁状构造,杏仁体含量 5%至 30%~40%不等,成份主要是蛋白石、绿泥石、方解石、沸石等,含自然铜和硅孔雀石。基质具填间结构和间隐结构,少数具显微斑状结构。
- 1.1.3 气孔状玄武岩 灰色、灰绿色,气孔含量 20%~40%,形状、大小不一。含硅孔雀石,基底见填间结构、显微斑状结构。
 - 1.1.4 斜斑玄武岩 灰色,斑状结构,基底具填间结构,含星点状自然铜。
 - 1.2 玄武岩系剖面特征

区内华力西期基性岩浆喷发活动,形成了本区上二叠统玄武岩组 $(P_2\beta)$ 和黑泥哨组 (P_2h) 两套地层,整个喷发过程具四个明显的旋回。

下部地层为玄武岩组 $(P_2\beta)$,由三个岩浆喷发旋回形成了特征互异的三个岩性段,均具海底喷发性质。

上部地层为黑泥哨组 (P_2h) ,由一个喷发旋回组成,具四个清晰的韵律层,属滨海相-沼泽相沉积。

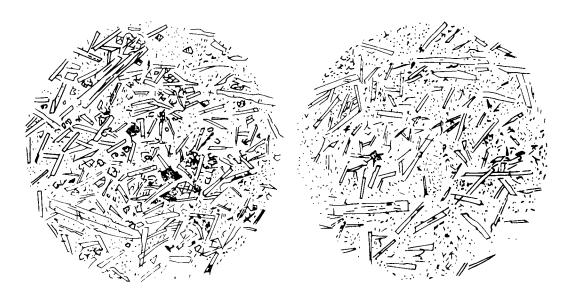


图 2 玄武岩的填间结构

(单偏光,10×10)

Fig. 2 Intersertal texture in basalt

图 3 玄武岩的间隐结构

(单偏光,10×10)

Fig. 3 Interaphanitic texture in basalt

1.2.1 上二叠统玄武岩组(P₂β)

根据玄武岩的岩石成分、结构构造和韵律层特征等,可将该套地层划为三个岩性段,代表岩浆喷发的三个旋回,其特征为:

上覆地层:Pah

---整合---

玄武岩组上段(P₂β³):

- 7. 深灰色致密状玄武岩,上部为杏仁状玄武岩,致密状玄武岩中含星散状自然铜。
- 514.4m
- 6. 深灰色、黄绿色致密状及杏仁状玄武岩、夹紫红色凝灰质页岩、凝灰岩及斜斑玄武岩,杏仁体中含自然铜及硅孔雀石。
- 376.6m

5. 深灰色斜斑玄武岩,顶部夹玄武质凝灰角砾岩。

53.6m

- 玄武岩组中段(P₂β²):
- 4. 深灰、灰绿色杏仁状玄武岩为主,夹致密状玄武岩及紫红色凝灰质页岩及 凝灰岩(由下而上由致密状玄武岩一杏仁状斑岩—凝灰质页岩及凝灰岩

组成几个小旋回)。

420m

3. 深灰、黄绿色致密状及杏仁状玄武岩自下而上由致密状玄武岩一杏仁状 1152.2m 玄武岩组成几个小旋回。

玄武岩组下段(P₂β¹):

2. 灰色、灰绿色玄武质凝灰角砾岩。

242.4m

1. 上部黄绿色杏仁状玄武岩;下部致密状玄武岩;底部紫红、黄灰色中-细粒凝灰质砂岩。

124m

---假整合---

下伏地层:P₁m

1.2.2 **上二叠统黑泥哨组**(P₂h)

区内黑泥哨组为一套喷发-沉积岩系,由上而下可分四个明显的韵律层(IV_{1~4}),显示凝灰质岩(偶含化石)—致密状玄武岩—杏仁状(或气孔状)玄武岩的变化规律。无论对黑泥哨组喷发-沉积岩系而言,还是就每一喷发韵律层而论,在喷发晚期,由于岩浆分异作用的进行和气液相组分的增加,往往导致含铜组分的递增,成为区内喜山期斑岩体外接触带铜矿的主要物质来源。

剖面特征:

上覆地层:下三叠统腊美组(T₁1)

---假整合---

第四韵律层(N₄)

13. 深灰色斜斑玄武岩,含自然铜	17.74m
12. 暗紫红色玄武质凝灰岩	24. 08m
第三韵律层(№₃)	
11. 灰色致密状玄武岩夹杏仁状玄武岩,致密状玄武岩含自然铜。	115.6m
10. 紫红色、灰色、灰黄色气孔状玄武岩,含硅孔雀石。	12.15m
9. 灰色致密状玄武岩,含自然铜。	7.67m
8. 紫红色玄武质凝灰岩。	9.19m
第二韵律层(№₂)	
7. 灰色杏仁状玄武岩,杏仁体中偶见孔雀石。	55.18m
6. 灰色蚀变玄武岩。	92.55m
5. 褐灰色、灰黄色粉砂质页岩、灰黑色碳质页岩、灰褐色玄武质岩屑砂岩,	
含腕足类化石。	87.50m
第一韵律层(№₁)	
4. 灰黑色杏仁状玄武岩。	42.30m
3. 灰黑色致密状玄武岩,含自然铜。	35. 72m
2. 灰色、灰黑色玄武质岩屑凝灰角砾岩。	69.38m
1. 灰色、灰黄色玄武质凝灰岩,含腕足类、有孔虫等化石。	17.45m
——整合	

下伏地层:P₂β³

2 华力西期基性喷出岩喷发旋回和喷发环境分析

本区华力西期基性喷发岩系,按其喷发特征可分出四个喷发旋回(表 1)。

第 I 旋回,喷发中心位于金沙江河谷一带,喷发规模较小,分布范围局限。该旋回以玄武岩、玄武质凝灰岩为主,超覆于下二叠统茅口组(P₁m)之上。

表 1 基性岩浆喷发旋回的划分

Table 1 Division of eruption cycles in basic magma

喷发旋回	I	II	п	I.	
地层代号	$P_2\beta^1$	$P_z \beta^2$	$P_2\beta^3$	P₂h	
喷发环境	浅海相	 浅海相	浅海-滨海相	滨海-沼泽相	
nate (4), 4+ 4丁	规模较小	喷发高峰	间歇性喷发	间歇性喷发	
喷发特征	分布局限	分布广泛	喷发中心西移	间隙多而短	
岩石组合	玄武岩、玄武质凝灰岩	玄武岩、凝灰岩	玄武岩夹凝灰岩、	玄武岩夹砂岩	
чниц			凝灰质页岩		

第 『 旋回,连续喷发-沉积于第 I 旋回之上,属喷发高峰期,喷发物广布全区。该旋回底部以一层玄武质凝灰角砾岩为底界,顶部具灰岩或页岩夹层,系海底喷发间隙期的海相沉积物。

第 Ⅲ 旋回,喷发中心西移,喷发间隙增多,具较多的凝灰质页岩、凝灰岩夹层,分布范围广。 第 Ⅳ 旋回,岩石组合以玄武岩夹砂岩为主,喷发间隙多而短,滨海-浅海相沉积夹层频繁出现,局部还有沼泽泥炭相沉积。

就区内基性岩浆的每一喷发旋回来看,具明显的韵律特征,每一旋回内可分一个或多个韵律层,岩性组合自下而上呈现凝灰质岩一致密状玄武岩一杏仁状(或气孔状)玄武岩的变化规律。这是由于控岩构造活动的多期次性和岩浆喷发过程的脉动性所致。第 II、IV 旋回普遍出现斜斑玄武岩,表明在岩浆分异作用后期,岩浆喷发的物理化学条件发生了改变,这对其含矿性的变化也有一定的影响。

区内玄武岩系中常有较稳定的海相沉积物夹层,且具典型的枕状结构特征,表明本区基性岩浆的喷发环境为滨海-浅海相。这种海相的基性火山喷发条件,有利于有用金属组份的沉积和富集。

3 华力西期基性喷发岩系岩浆演化分异特征与含矿性探讨

本区华力西期基性岩浆喷发早、中期具浅海相喷发性质,第Ⅰ旋回~第Ⅱ旋回中期属持续

稳定阶段,喷发-沉积了厚度较大的玄武岩层。岩浆演化分异至第 正旋回晚期,喷发活动渐趋频繁,喷发强度也相应增强;到黑泥哨期,喷溢活动具裂隙喷发的特点,表现在早期旋回玄武岩的硅化、碳酸盐化或沿已固结玄武岩的裂隙进行侵入穿插。

就区内玄武岩系的矿物成分的变化而言,自下而上,斜长石具从基性一中性的演变规律, 辉石以单斜辉石为主,且由下而上逐渐增多,绿泥石、绿帘石、石英、玛瑙等杏仁体发育。

随着岩浆分异作用的进行,气液相组份增多,铜(铅、锌等)元素亦渐趋富集,并导致了不同喷发旋回的玄武岩系中自然铜、硅孔雀石等铜矿物含量和岩石中铜等元素的规律性递增(表2)。至玄武岩浆喷发晚期,由于岩浆分异作用较为彻底,铜等元素的含量更趋富集,尤其第 \mathbb{N} 旋回地层(\mathbb{P}_2 h)上部致密状玄武岩中,铜元素含量可高达0.1%以上(表 3)。

表 2 各旋回玄武岩 Cu,Pb,Zn 含量分析表

Table 2 Cu, Pb, Zn content analysis in each cycle basalt

取样层位		第 I 旋回(P ₂ β ¹)		第 I 旋回(P₂β³)) 第 N 旋回(P₂h)	
样.	品数	18	16	18	24	
含	铜(Cu)	2~5 (最高 25)	10~50	20~400	100~1000	
矿 性	铅(Pb)	0~1	<1~2	1~5	1~2	
$(\times 10^{-6})$	锌(Zn)	<10~10	<10~10	<10~20 (最高 30~60)	<10~10	

成都理工学院测试中心分析(原子吸收光谱法)

表 3 第 🗉 、第 🗅 旋回玄武岩铜元素分析

Table 3 Cu Content analyseis in basalt of the third and fourth cycle

样品岩石名称	第 正 旋回(P₂β³)		第 N 旋回(P₂h)		
许加石石石物	样品数	平均含量(×10-6)	样品数	平均含量(×10-6)	
致密状玄武岩	9	110	10	650(个别大于 10000)	
气孔、杏仁状玄武岩	5	386	6	360	
斜斑玄武岩	4	250	8	280	

成都理工学院测试中心分析(原子吸收光谱法)

区内第 \blacksquare 、 \mathbb{N} 旋回不同岩性玄武岩的光谱分析结果表明(表 3),第 \blacksquare 旋回($P_2\beta^3$)铜总平均含量达 249×10^{-6} 左右,高于玄武岩中铜的丰度值 2.8 倍以上,高于克拉克值近 12 倍。第 \mathbb{N} 旋回(P_2h)铜总平均含量达 430×10^{-6} 左右,高于玄武岩中铜的丰度值 5 倍,高于克拉克值约 20 倍。

对宁蒗-丽江地区区域铜矿资料的统计结果表明(表 4),铜矿床(矿点)主要赋存于黑泥哨组(P_2h),赋矿机率高达 55%;玄武岩组上段($P_2\beta$ 3)次之,赋矿机率为 30%。该统计结果清晰地

显示了岩浆分异作用与含矿性变化之间的关系。

表 4 宁蒗-丽江地区区域铜矿赋矿机率统计

Table 4 Regional minerogenetic rate of copper ore in Ninglang-Lijiang are

赋矿层位	P ₂ h	$P_2\beta^3$	$P_2\beta^2$	$P_2\beta^1$	合计
铜矿床(矿点)	22	12	5	1	40
赋矿机率	55%	30%	12.5%	2.5%	100%

总之,本区晚期玄武岩浆喷发-沉积的第 $\mathbb{I} \setminus \mathbb{N}$ 旋回地层($P_2\beta$ 和 P_2h),是区内铜矿的重要矿源层和主要赋矿层位,亦是本区找矿的显著层位标志。

另外,区内玄武岩系中铅锌元素的的含量,随着玄武岩浆演化分异作用的进行,也显示与铜元素同步增长的趋势。

成文前野外工作过程中,曾得到徐旃章教授、张寿庭副教授的热心指导,成文后又承蒙我的博士导师童崇光教授的仔细审阅,在此一并致谢。

参考文献

- 1 云南省地质矿产局,云南省区域地质志,地质出版社,1990
- 2 胡受权,云南宁蒗地区喜山期斑岩成矿带构造控岩控矿特征,成都地质学院硕士学位论文,1991
- 3 徐旃章,等,矿产资源评价,成都科技大学出版社,1993
- 4 徐旃章,张寿庭,矿产资源调查评价与开发利用引论,成都科技大学出版社,1993

STUDY ON ORE-BEARING PROPERTY OF VARISCAN BASIC EXTRUSIVES FROM SHUZA TO SHULAOHE IN NINGLANG AREA OF NORTHWEST YUNNAN

Hu Shou-quan

Guo Wen-ping

(Chengdu Institute of Technology) (Geology and Drill Team of Sichuan Salt Co)

Abstract

Variscan basic extrusives with distinct cyclicity erupted and deposited from littoral region to epeiric sea during variscan period. In pace with the Variscan basic maginatic differentitation, its ore-bearing property (meaning content of Cu, Pb, Zn etc) is progressively increasing. The basaltic formation of the third and fourth cycle ($P_2\beta^3$ and P_2h) is the important ore Source and ore bed in this district.