辽宁八家子铅锌矿床 硫同位素地球化学

蒋少涌 丁悌平

魏菊英 苏 琪

(地矿部矿床地质研究所)

(北京大学地质系)

提 要 八家子矿床的硫同位素组成的系统研究表明,矿体中硫化物 δ³⁴S 值为6.0~-8.2‰,在频 率直方图上呈塔式分布,具有明显的时、空变化规律。矿区黑云母石英闪长岩中浸染状黄铁矿 δ³⁴S 值为1.9~-0.8‰,变化小。地层中浸染状、分散状和层纹状硫化物 δ³⁴S 值为13.0~-19.1‰,变化 较大。根据矿床地质条件、矿物共生组合、成矿温度和硫同位素,进一步讨论了成矿溶液的化学条件 和演化特征,认为矿床硫的来源可能是地层硫和岩浆硫的混合。 关键词 硫同位素 成矿溶液化学环境 硫源 辽宁八家子

1 矿区地质简况

八家子矿床位于辽宁省西部建昌县境内,是我国东北十分重要的一个铅锌银多金属矿山 基地。矿区地层由中元古界碳酸盐岩组成,含矿层为大红峪组和高于庄组。大红峪组石英砂岩 局部含矿,为浸染状矿石或胶结状矿石;高于庄组白云岩可分为四段,其中一、三段含锰燧石条 带白云岩中赋存着矿区绝大部分工业矿体.这些矿体主要受断裂构造的控制,多集中在北西向 主含矿断裂及其分支断裂带中,在断裂复合部位、转弯部位常呈现较大矿体。除北西向主含矿 断裂外,矿区还发育有东西向、北北东向或近南北向断裂,在这些断裂带中,局部也可见矿体。 矿区内岩浆活动十分发育,在矿区东部、南部和西部均有岩体出露。其中与成矿关系最为密切 的是东部燕山期的黑云母石英闪长岩体,出露面积近一平方公里,侵入于大红峪组石英砂岩和 高于庄组白云岩层中,呈岩舌、岩株状。在岩舌接触顶面及周边部位,构造破碎强烈,矿化发育。 从该岩体沿北西向主成矿断裂向外,依次分布有北山、红旗(和炉沟)、东风和冰沟等五个矿段, 构成八家子矿的主体(图1)。

图1 八家子矿区地质图 Fig. 1 Geological map of the Bajiazi mining district

矿床矿石矿物以黄铁矿、磁黄铁矿、闪锌矿、方铅矿和黄铜矿等为主,含银矿物主要为自然 银和黑硫银锡矿。矿体形态为脉状、透镜状、枝叉状和囊状,极少见似层状矿体。矿化具有明显 的分带性,从东部黑云母石英闪长岩接触带处起沿北西向断裂向外,依次出现:a.含铜钼磁铁 黄铁矿体(近接触带和北山),b.黄铁矿体(北山,红旗),c.黄铁铅锌矿体(红旗,东风),d.铅锌 银矿体(含重晶石)(东风,冰沟)。相应地,矿床成矿期次可划分为四个阶段:磁铁矿化阶段,黄 铁铅锌矿化阶段,铅锌银矿化阶段和碳酸盐化阶段。通过对透辉石、透闪石、石榴石、重晶石、方 解石、白云石和闪锌矿等的均一温度测定结果表明①,成矿温度从早到晚由400~300℃下降至 300~200℃,到最晚期碳酸盐化阶段后期降至<200℃。围岩蚀变发育有不强烈的硅化、透闪石 化、蛇纹石化、金云母化、黄铁绢英岩化和铁锰碳酸盐化。

2 硫同位素组成特征

本次研究中,对八家子矿床的硫同位素进行了系统分析测试,同时收集了部分前人资料。

① 董永观,1986

所有数据列于表1。

90

从表1可知,矿体中硫化物的 δ³⁴S 值为6.0~-8.2‰,在频率直方图上呈明显塔式分布(图 2)。矿区黑云母石英闪长岩中浸染状黄铁矿化的 δ³⁴S 值为1.9~-0.8‰,变化范围小且接近零 值。地层中浸染状、分散状硫化物和层纹状硫化物的 δ³⁴S 值为13.0~-19.1‰,变化范围大且 分散(图3)。从图3清楚可知,从北山矿段→炉沟、红旗矿段→东风矿段→冰沟矿段,即从近岩体 接触带向外沿北西断裂带,硫化物的 δ³⁴S 值由高→低,由集中→分散。对单个硫化矿物来说,也 清楚地显示了这种变化趋势(图4)。

图2 八家子矿床硫同位素短 二项率直 汽 Fig. 2 Histogram showing the sulfur isotope composition of the Bajiazi ore deposit

图5显示同一矿体从深部到浅部,硫化 物的δ³⁴S值由高→低,不同矿体从近接触 带的449号矿体到远接触带的309号矿体, 硫化物δ³⁴S值由高→低。

对矿床矿物共生组合和成矿温度的研 究表明⁽⁸⁾,从近接触带的北山矿段到远接 触带的冰沟矿段,成矿阶段由早到晚,成矿 温度由高到低。因此图3、4中所显示的硫同 位素变化规律也是硫同位素随时间而变化 的规律,即早期 δ³⁴S 值高,集中;晚期 δ³⁴S 值低,分散。

说明:1. 冰沟矿段 2. 东风矿段 3. 红旗矿段 4. 炉沟矿段 5. 北山矿段 6. 岩体 7. 地层

- 图3 八家子矿床矿体、岩体和地层中硫化物的硫同 位素组成对比图
- Fig. 3 Comparison diagram of sulfur isotope compositions of sulfide in different orebodies, igneous rocks and sedimentary strata

Ľ

...

91

表1 八家子矿床的硫同位素组成

Table 1 The sulfur isotopic compositions of the Baijiazi deposit

序号	样品号		δ ³⁴ S	(%)			
		Ру	Sp gn	Ср	Ро	Ba	- 样品地质情况
		北	山矿段				
1	8-13	5.4		5.9			#501磁铁矿体边部黄铁矿石
2	8N-2	2.2					#506-1,块状黄铁矿石
3	Bt8-7-1	5.3					磁铁矿体
4	Bt]4-7	4.4					黄铁矿石
5	S-1	3.7					
6	S-2	6.0					
7	S-3	4.8					
8	S-4	3.6					
9	S-5	2.5					
10	S-6	4.0					
11	S-7	4.2					# 501矿体
12	S-8	2	. 5				
13	S9		31				
14	S-10			4.9			
15	S-11	0.9(辉钼	矿)				
16		炉	沟矿段				
16	BL6-1	3.4					黄铁铅锌矿石
17	BL7-5	3.4					#449,黄铁铅锌矿石,+245米
18	BL9-7	3.9					#449黄铁铅锌矿石,+185米
19	BL12-6-1	4.0					#449黄铁铅锌矿石,+155
20	B295	2.0 1	.0 1.1				黄铁铅锌矿石
21	BL27-4		1.5	3.6			铅锌矿石
22	BL12-9-1	2.7					铅锌矿石
23	85SB-L-1	2.1					#449,致密块状黄铁矿石,+275米
24	84SB-L-12	3.6					#449,粗粒黄铁矿,+215米
25	85SB-L-35	5.0					#449,粗粒黄铁矿石,+125米
26	85SB L 48		2.1				#449,粗粒黄铁铅锌矿石,+185米
27	85SBL-8	0.5					#418,致密块状黄铁矿石,+215米
28	BS 10		2.4				# 449矿体
29	BS-11	5	. 1				#449矿体
		红红	質矿段				
30	8H-26	1.6		18			#100,含磁铁矿黄铁矿石,-60g
31	Bh6 — 1	4.0					黄铁矿石
32	Bh 4 6	3.8					黄铁矿石
33	Bh15-5-1	3.0					黄铁矿石
34	Bh16-8-1	2.8					黄铁矿石
35	Bh14-5-1	2.0					黄铁矿石
36	Bg6-1	3	2 1.8				铅锌矿石
37	Bg245	3.1 1	4 1.7				铅锌矿石
38	85SB-H-36	1.7					#100,细粒黄铁矿石,+30米
39	85SB-H-12	3.5					#100,粗粒黄铁矿石,-30米
40	85SB-H-23	4.1					#100 ,细粒黄铁矿石. -90米
41	85SB-H-32	2.9					#107.粗粒黄铁矿石,+30米
42	85SB-H-1	2.4					#21,黄铁矿石,-30米
43	85SB-H-19	3.9					#115,黄铁矿石,-90米
44	B-10	0.1 0.	1 - 1.1				黄铁铅锌矿石
		东	(矿段				
45	8E-33	2.8					块状黄铁矿石(立方体)
46	8E38	1	—1 . 9	— J. 4	-2.9		#332,磁黄铁黄铜矿石,-115米
47	Bj15—1	4.	6 3.2			16.4	铅锌矿石
48	Bj3—15	-3.7 - 3	3.2 -3.7				铅锌矿石

۱

续表1

序号	样品号			δ ³⁴ S	(‰)			
		Ру	Sp	gn	Ср	Ро	Ba	样品地质情况
49	Bj2-7	-7.4						
50	85SB-D-41	· · ·	-2.2	-2.7				#309,粗粒铅锌矿石,-85米
51	85SB-D-31	1	-	-0.7				#309,粗粒铅锌矿石,-115米
52	85SB-D-8		1.8	0.7				#309,粗粒铅锌矿石,-145米
53	85SB-D-48	-1.4		-3.8				#309-2,黄铁铅锌矿石,-85米
54	85SB-D-19	-5.6						#332,黄铁矿石,-145米
55	85SB-D-47	1 · · ·		2.2				#332,细粒铅锌矿石,-85米
56	85SB-D-39			0.4				#332,铅锌矿石,-85米
57	84SB-D-15			0.5				#333,铅锌矿石,-115米
58	BS-17			-2.4				#309,铅锌矿石,-55米
59	BS-23			2.7				#309,铅锌矿石,-55米
60	BS-24	1	5.1					#309,铅锌矿石
		.	冰沟矿	段		•		
61	B ₂₄ -6	-	-6.5 -	-8.2			15.3	
62	84SB-280-6	-	-6.5 -	-8.2				#280,细粒铅锌矿石,302米坑
63	84SB-256-6	-	-1.9 -	-3.7				#256,细粒铅锌矿石,256米坑
64	84SB-280-3		_	1.1				#280, 相約铅锌矿石, 302米坑
		•	岩体中	4				
65	84SB-L-3	0.8	<u></u>					星 点 状 分 布 . 炉 沟 215 米
66	85SB-L-44	1.5						星点状分布,炉沟215米
67	84SB-H-4	-0.8						星点状分布,红旗0米
68	85SB-H-47	1.0			-			
69	85SB-H-49	1.9	-					星占状分布,红旗0米
70	85SB-H-51	1.9						
71	S-61	-0.3						星卢状分布。炉沟花岗舒岩中
72	S-95	1.4						星点状分布, 炉沟里
		1	地层中	1				
73	84SB-H-8	4.6	-G/A					白云岩中星点状,红旗0米
74	84SBH-6	3.8						白云岩中星卢状,红旗0米
75	85SB-H-53	2.8						白云岩中星占状,红旗0米
76	84SB-L-21	0.7						白云岩中星卢状, 位次215米
77	84SB-256-1	-3.6						白云岩中星点状。炉沟256采坑
78	84SB		_	-1.4				白云岩中星点状,北山散表
79	S-49	4.1						
80	S-50	4.0						#424, 石英砾岩中黄铁矿
81	S-51	2.1					ĺ	#448.含锰白云岩中黄铁矿
82	S-52	3.4						#448.石革砥岩中黄铁矿
83	S 85	10.5						粗晶黄铁矿脉,产于 chg1白云岩中
84	S 86	-3.8						呈似层状,产于碳质页岩中
85	S-87	-2.9						呈串發状产于碳质面岩中
86	5-88	-4.2						<u>北</u> 中东水,1500000
87	S	4.1					ľ	用品浸边状苗铁矿炉沟
88	S-92	13.0						知晶带铁矿,产于 chg3 会轻白云岩由
80	S-93	-8.0						
90	S-94	-5.7						1.5×2×1×1 1.5×2×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×
91	S-57	19.1						
92	S-84	10.1		1.5				早龄我产于全绿白云岩由
93	S-90			1. 2				王///// J J J J J J J J J J J J J J J J J
94	S-91			0.2				脉状产于 chg1白云岩中,与黄铁矿共生

注1 Py-黄铁矿 Sp-闪锌矿 gn-方铅矿 Cp-黄铜矿 Po-磁黄铁矿 Ba-重晶石

注2 1,2,30,45,46号样据本文。3,4,16-22,28,29,31-37,44.47-49,58-61号样据毕承恩、董永观(1989)。23-27, 38-43,50-57,62-70,73-78号样据苏琪、魏菊英(1980)。5-15,71,72,79-94号样据扬占兴、刘素英(1990)。

说明:1. 黄铁矿 2. 黄铜矿 3. 闪锌矿 4. 方铅矿 图4 不同矿物的硫同位素组成空间分布特征

3 成矿溶液的物理化学条件

硫化物的硫同位素组成严格受溶液的 PH 值、氧逸度(fo₂)、温度(T)、流的浓度(ΣS)和总硫 同位素组成(δ³⁴S_{3S})的控制(Ohmoto, H. 1972)。

八家子矿床在成矿作用最初阶段,矿化主要表现为岩体中浸染状黄铁矿化。将岩体和成矿 溶液体系当作封闭体系考虑,此时硫同位素分馏类似于瑞利分馏过程(赵瑞,1987)。⁽⁴⁾

Rc/Rc°=f^{α-1}是瑞利分馏的一种基本表达式。在热液晶出硫化矿物的条件下,通过一系列 变换,该式变为:

$$\delta_{i} = (\delta_{i}^{0} + 1000) \mathbf{f}^{\alpha_{i-1}-1} - 1000$$

此式描述了晶出硫化矿物的硫同位素组成(&)、最初晶出硫化矿物的硫同位素组成(&)、晶出 硫化矿物与溶液的硫同位素分馏系数(a,t)三者同溶液中剩余硫分数(f)之间的关系。

控制黄铁矿形成的化学反应主要为:

 $4Fe^{2+} + 7H_2S + SO_4^{2-} = 4FeS_2 + 4H_2O + 6H^+$

设r为形成黄铁矿所消耗溶 液中 H₂S 同 SO²的摩尔分数比,根据上式,

$$r = X_{H_2S}/X_{SO_4^{2-}} = 7$$

溶液的硫同位素组成及从中晶出含硫矿物的种类和同位素组成,在形成过程中的变化主要受溶液的初始 X_{H,s}/X_{so}²⁻ (r值) 控制(赵瑞,1987)。如图6所示,当 r=7时,只能不断从溶液中晶出黄铁矿;当 r=70时,即溶液中主要为 H₂S,从中晶出的铁硫化物为磁黄铁矿。

图5 矿石的 δ³4S 值随深度的变化图

Fig. 5 Variation in $\delta^{34}S$ values of orebodies with depths

八家子矿床黑云母石英闪长岩中产出的浸染状黄铁矿化的 δ³⁴S 值为1.9~-0.8‰,平均 1.1‰。因为这些浸染状黄铁矿的量同矿床硫化物的总量相比微不足道,即此时溶液的 f 值> 0.9,甚至0.99。从图6可知,此时成矿溶液的总硫同位素组成 δ³⁴S₃₅为3‰左右,此时溶液的 X_{H,s}/X_{so2}-(r 值)为7~5左右。

当成矿溶液从岩体接触带向外流动时,沿北西向断裂带逐步沉淀出本区主要矿体(北山、 红旗、炉沟、东风和冰沟)。此时成矿体系由封闭转变为开放体系,并伴随有外来溶液(天水)的

١

图7 350(时 Fe-S-O-Si 体系的相关关系(据 Mottl, 1977) Fig. 7 Facy diagram of Fe-S-O-Si system at 350°C (after Mottl, 1977)

加入^①。在这个过程中,成矿温度由初始的400~ 300℃逐渐下降至晚期的300~200℃。下面我们简单 地分两个阶段即成矿早期(T=400~300℃,平均 350℃)和成矿晚期(T=300~200℃,平均250℃)来 讨论成矿溶液的物理化学环境。

Fig. 6 Rayleigh differentiation model of sulfur isotope composition (after Zhao Rui, 1987)

图6 硫同位素瑞利分馏模式(据赵瑞,1987)

3.1 成矿早期的物理化学环境

在这一阶段中典型的矿物组合为磁铁矿+黄铁矿+黄铜矿+(磁黄铁矿)。此时在接触带 岩石中发育有黄铁绢英岩化蚀变,因此溶液的 pH 值可能受石英-云母-长石这一硅酸盐矿 物组合的制约:

3KAlSi₃O₈+2H⁺=KAl₃Si₃O₁₀(OH)₂+6SiO₂+2K⁺

则 pH=-lga_k++ $\frac{1}{2}$ lgk,当温度为350℃,与黑云母石英闪长岩平衡的溶液 a_K+的合理值为0.1 ~0.01M。平衡常数 lgk 值据 Ohmoto,H. (1972)为7.60⁽⁵⁾。计算出溶液的 PH 值为4.8~5.5。

利用 Mottl(1977)编制的 Fe-S-O-Si 系统的相关关系^[6],350℃时溶液的 lgfs₂-lgfo₂相图如 图7。可知此时溶液的 lgfo₂=-30左右,lgfs₂=-9左右。

溶液的总硫浓度 mxa值影响着硫化矿物的共生界线,不同的 mxa值具有不同的 Fe-Cu-S-O 矿物稳定场(Ohmoto,H.,1972)。在水溶液中,硫的逸度与氧逸度、pH 值和硫的浓度有如下关系:

$$\mathbf{f}_{\mathbf{s}_2} = (\frac{\mathbf{K}_{\mathbf{h}_{\mathbf{s}}} \cdot \mathbf{X}_{\mathbf{H}_2 \mathbf{S}} \cdot \mathbf{m}_{\Sigma \mathbf{s}} \cdot \mathbf{f}_{\mathbf{H}_2 \mathbf{S}}}{\mathbf{a}_{\mathbf{H}_2 \mathbf{O}}})^2 \cdot \mathbf{f}_{\mathbf{O}_2}$$

式中平衡常数 K_{hs}和 H₂S 的摩尔分数 X_{H,s}由下两式规定:

① 蒋少涌等,八家子矿床氢、氧、碳、硅稳定同位素研究,1991

第六卷 第三期

$$H_2S(\dot{x}$$
溶)+ $\frac{1}{2}O_2$ 与 $H_2O(\dot{\alpha})$ + $\frac{1}{2}S_2$

H₂S(水溶)与H⁺+HS⁻

已知 lgfo₂=-30,lgfs₂=-9,pH=4.8~5.5,计算出 m₃₃约为0.02。

溶液的离子强度(I值),可根 据矿区的包裹体盐度资料近似获 得。由于盐度是用假设的 NaCl-H₂O 体系相图确定的,考虑到溶液 中其他盐类分子量均大于 NaCl,因 此实际上盐的总摩尔浓度应小于盐 度所代表的 NaCl 摩尔浓度,即 I_{mm}<I_{mm}。一般认为,当盐度分别 为5%、10%。、20%和30%时,相应 的 I 值为0.5、1、2、和3。根据本文对 矿区石英包裹体盐度的测定结果为 4.7~9.1%NaCla,对应的 I 值为0. 5~1。考虑到所测矿物为相对稍晚 矿物(石英脉),故早期阶段溶液实 际盐度可能高于4.7~9.1。因此取 I 值为1较为合理。

根据上述讨论,将获得的成矿 溶液的 T(350℃)、I 值(1)、lgfo2值 (-30)、pH 值(4.8-5.5)等条件应 用于 Ohmoto, H(1972)的 lgfo2-pHδ³⁴S 相图中(图8)。当溶液的总硫同 位素 δ³⁴S₂₂值为3‰左右(2-6‰) 时,图8中投影区所对应的 δ³⁴S₂₉/值

图8 成矿早期溶液的 lgfo₂-pH-δ³⁴S 相图(据 Ohmoto, H., 1972) Fig. 8 lgfo₂-pH-δ³⁴S diagram of ore-forming solution in the early stage (after Ohmoto, H., 1972)

为2.7‰左右(0.7-5.7‰),与八家子矿区的实际情况十分吻合($\delta^{34}S_{py}=0.5\sim5.3\%$,平均3. 2‰)。该值与上面我们根据瑞利分馏模式求出的总硫同位素值大体吻合,说明溶液的同位素组 成没有大的改变,这时,溶液的 X_{H,s}/X_{so}²-(r值)应为7~5左右。

3.2 成矿晚期的物理化学环境

晚期阶段典型的矿物组合为方铅矿+闪锌矿+重晶石。采用 Kajiwara 等(1970)的硫酸盐 一硫化物一氧化物的 lgfo2-T 相图⁽⁷⁾,温度为250℃时,溶液的 lgfo2=-35左右(图9)。

考虑到成矿溶液在向围岩流动过程中,应与碳酸盐达到平衡,则 pH 值受碳酸盐岩溶解的 制约。据 Ohmoto,H. (1972),,在250℃时,与 CaCO3平衡的纯水,其 pH 值为7.3。因此从早期到 晚期,溶液的 pH 值应该逐渐增高。pH 值的变化是一个缓慢的过程。溶液的 pH 值增高,也是从 含氯化物溶液中沉淀出硫化物的有效方法之一。 对矿区黄铁矿的研究表明^(2.8), 在接触带附近的磁铁矿黄铁矿体 中,黄铁矿多为他形粒状或不规则 状;稍远离接触带的黄铁矿体中黄 铁矿则为半自形至自形五角十二面 体;而远离接触带的铅锌矿体中黄 铁矿多为立方体晶形。即随着成矿 作用从早期到晚期,黄铁矿的晶形 有规律地递变。已有研究表明,这种 递变规律主要是由于介质的温度、 压力下降,溶液中硫、铁的浓度降 低,使结晶速度变慢造成的⁽⁸⁾。已知 早期阶段溶液的总硫浓度 m₂=0. 02,那么晚期阶段的 m₂₀应稍有降 低,假定为0.01。

根据溶液的 PH 值(5.5~7. 3)、lgfo₂(-35)、m_{2a}(0.01),可以计 算出晚期阶段溶液的硫逸度 lgfs₂为 -10~-12左右。

将成矿溶液的T(250℃)、I
(1)、pH值(5.5~7.3)、lgfo₂(-35)
等条件应用于Ohmoto,H.(1972)的
lgfo₂—pH—δ³⁴S相图中(图10),当
溶液的总硫同位素δ³⁴S₂为0‰左右
时,图10中投影区所对应的δ³⁴S_{py}值
为-1~-10‰左右,δ³⁴S_{Baso},值为
6.8~26.5‰左右。这些结果与矿区

图 5铅矿-闪锌矿-重晶石稳定组合 lgfo₂-T 相图 (据 Kajiwara, 1970)

Fig. 9 lgfo₂-T diagram showing galena-sphalerite-barite stable fields (after Kajiwara, 1970)

实际情况大体相符(δ³⁴S₂₉为-1.4~-7.4‰;δ³⁴S_{BaSO}为15.3~16.4‰)。

假定在250℃时,溶液的 δ³⁴S_{H₂}s值接近于 δ³⁴S_{py}值,而 δ³⁴S_{so}²⁻值接近于 δ³⁴S_{Bsso},值,则根据 Ohmoto,H. 和 Rye(1979)方程:⁽⁹⁾

$$\delta^{34}S_{H_2S} = \delta^{34}S_{\Sigma s} - \Delta^{34}S_{So_4}^{2-} - H_2S}(\frac{R'}{1+R'})$$
可求出 R'(X_{So_4}²⁻/X_{H_5})=0. 285,即 r(X_{H_5}/X_{So_4}²⁻)=3. 5,

4 成矿溶液的演化及硫的来源

通过上述讨论,可清楚地看出随 成矿作用从早期到晚期,成矿溶液的 温度(T)、pH值、氧逸度(fo₂)、硫逸度 (fs₂)'总硫浓度(m₃₅)、总硫同位素(δ³⁴ S₃₅)和还原硫与氧化硫的比率(r值) 等物理化学参数均在不断地变化(表 2)。正是由于这些参数的变化引起溶 液物理化学条件的改变,从而使硫化 物不断地从溶液中沉淀下来,且表现 出从早期到晚期,从磁铁矿黄铁矿化 →黄铁矿化→黄铁铅锌矿化→铅锌银 矿化的规则分带,矿物的 δ³⁴S 值也由 高到低,由集中到分散的变化。

成矿溶液中总硫的同位素组成可 以讨论矿石中硫的来源。求得早期成 矿溶液的总硫同位素值为2~6%(3% 左右),为一偏离零值不很大的正值。 这种硫的来源很可能是岩浆硫和地层 硫混合的结果。但究竟以哪一种硫为 主,有待于进一步的研究。成矿溶液演 化到晚期,其总硫同位素组成为零,比 早期成矿溶液的值有所降低,可能主 要是由于溶液本身物理化学条件的改 变及硫化矿物不断沉淀造成的。

在研究过程中,得到了八家子矿 地测科许多同志的协助以及我所白瑞 梅、李金城等同志的帮助。文中还引用 了许多前人所做的工作。作者在此深 表谢意。

图10 成矿晚期溶液的 lgfo₂-PH-δ³⁴S 相图 (据 Ohmoto, H., 1972)

表2 成矿溶液的物理化学特征值

参数	成矿早期	
Τ(℃)	400~300°C (350°C)	300~200°C(250°C)
pH	4.8~5.5	5.5~7.3
lgfo ₂	$-30\pm$	$-35\pm$
igfs ₂	$-9\pm$	-10~-12
mss	0. 02	0. 02~0. 01
r	7~5	3. 5
δ ³⁴ S _{ΣS}	2~6(3)	0

Table 2 The physical-chemical parameters of the ore-forming solution

参考文献

1 毕承思等,八家子铅锌矿床稳定同位素研究,中国地质科学院矿床地质研究所所刊,(1)1989

2 薛永平等,建昌八家子富银铅锌矿床成因探讨,辽宁地质学报,(1)1985

3 杨占兴,刘素英,八家子铅锌矿硫同位素特征及其地质意义,辽宁地质,(2)1990

4 赵瑞等,中国东部与中生代岩浆活动有关矿床的硫同位素研究,中国科学院地质研究所集刊,(1)1987

- 5 Ohmoto H, Systematics of sulfur and carbon isotope in hydrothermal ore deposits. Econ. Geol. Vol. 67, (1)1972,551~578
- 6 Mottl M J, Chemical exchange during hydrothermal alteration of basalt by seawater-- 1. Experimental results for Fe, Mn and sulfur species, Geochim. Cosmochim. Acta, Vol. 43, 1970,869 ~ 884
- 7 Kaijwara Y S, Some limitations on the physicochemical environment of deposition of the Kuroko ore, Volcanism and ore genesis, 1979, 367-380
- 8 董永观,八家子铅锌矿矿化蚀变分带特征,矿床地质,(4)1986
- 9 Ohmoto H & Rye R O, Isotope of sulfur and carbon, Geochemistry of hydrothermal deposits (2nd edition), by Barnes, H. L., 1979,509~567

SULFUR ISOTOPE GEOCHEMISTRY OF THE BAJIAZI LEAD-ZINC

DEPOSIT, LIAONING PROVINCE, CHINA

Jiang Shaoyong, Ding Tiping

Wei Juying, Su Qi

(Institute of Mineral Deposits, Chinese Academy of Geological Sciences)

(Department of Geology, Peking University)

Abstract

The sulfur isotope compositions of the Bajiazi ore deposit are studied in detail. The δ^{34} S values of sulfide in orebodies are between 6.0 and -8.2 per mil, showing a peak curve in histogram and having a horizontal and vertical zoning character. The δ^{34} S values of the disseminated pyrite in biotite quartz diorite are between -0.8 and 1.9 per mil, varied a little. The δ^{34} S values of sulfide in sedimentary strata varied widely from -19.1 to 13.0 per mil. According to the geological background, mineral paragenesis, ore-forming temperature and δ^{34} S values, we further discussed the chemical features of ore-forming solution in different stages. The source of sulfur in orebodies is estimated from a mix of sedimentary rock sulfur and igneous rock sulfur.