1

河南舞阳赵案庄铁矿中 利蛇纹石的研究

蒋永年

(天津地质矿产研究所)

摘 要 本文对河南舞阳赵案庄铁矿中的利蛇纹石进行了综合性研究,包括化学成分、物理性质、 X 射线衍射分析、热分析、红外吸收光谱、穆斯堡尔谱、电子衍射和成因。根据成因信息,作者认为, 蛇纹石化作用的营力一水和参加晶格的某些阳离子如 Al³⁺、Fe³⁺对利蛇纹石的形成起着主要的 作用,温度和压力居于次要地位。

关键键词 舞阳 超基性岩 利蛇纹石

赵案庄铁矿是一个矿物成分复杂的富铁矿盲矿体,产于河南舞阳八台一带的蛇纹岩中。 1976年以来,该矿区的地质工作主要侧重铁矿的矿石成分、矿石类型和矿床成因的探讨,而对 铁矿石的主要脉石矿物和矿体围岩的主要造岩矿物一蛇纹石(以利蛇纹石为主)则缺乏比较详 细的研究。作者认为,蛇纹石(尤其是利蛇纹石)的研究,不仅能提供系统的矿物学资料,而且 有助于阐明该铁矿的成因问题。

1983 年 7 月,作者曾在该矿区踏勘,采集了一些样品,本文是在分析、研究所取得的资料 后完成的。

一、矿区地质概况

赵案庄铁矿位于河南舞阳八台倾状背斜的轴部。据前人资料,矿区内的地层主要是上太 华群赵案庄组变质岩系。岩浆岩以超基性岩为主,如橄榄岩类、辉岩类等。这些岩类先后经区 域变质和交代蚀变作用,形成各种蛇纹岩类。赵案庄铁矿就产在蛇纹岩中。矿体为似层状和 凸镜状。矿体形态与围岩一蛇纹岩基本一致。矿体与围岩没有明显的界线,呈渐变关系。

至于断裂,大致可分为盖层和基底两类。盖层断层有近东西向和近南北向两组,前者较 早,且规模较大,多为逆掩断层和逆断层,导致太华群地层超复出露;后者较晚,横切前者。基 底断层只在详勘区发现,断层性质不明。此外,据钻探资料,在深部有破碎带。显然,上述断裂 破坏了岩体和矿体,对它们的后期蚀变一蛇纹石化起着重要作用。

二、利蛇纹石的基本特征

本区超基性岩经蛇纹石化作用的产物主要是利蛇纹石,纤蛇纹石和叶蛇纹石较少。本文 研究两个利蛇纹石样品。

1、形态和物性 晶体常呈板片状、长条状(照片1和2)。由于利蛇纹石常常是交代斜方 辉石、橄榄石的产物,故它们往往按斜方辉石、橄榄石形成假象。

黄绿色,解理//{001},完全。比重 2.553。镜下无色或带淡的黄绿色调,无多色性。Ng ≈ Nm = 1.5582 (No.1)~1.5574 (No.2),Np = 1.5498 (No.1)~1.5496 (No.2)。一级灰干 涉色。负延性。二轴(一),2V 很小(近于 0°)。

 2. 化学成分特点 表 1 列出两个利蛇纹石的化学成分和计算的离子数。它们的化学成 分特点如下:

利蛇纹石的化学成分比较简单,但也有一些阳离子以类质同象方式参与晶格。两个利蛇 纹石的 Al₂O₃ 分别为 2.31% (重量百分比,以下同)和 1.25%。Al 在晶格中置换 Si 和 Mg。

序号	1		2 83 BZ -119 M		按 14 (0)计算的离子数			
年 星 份	83CZ-7					1	2	
SiO ₂	40. 53	40.64*	41.29	41.62*	Si	3. 7876	3. 8898	
TiO,	0.00	0.00	0.00	0.00	Alıv	0.1543	0.0507	
Al ₂ O ₃	2.30	2. 31	1.24	1.25	Fe ³ ⁺	0.0581	0.0595	
Cr ₂ O ₃	0.00	0.00	0.001	0.001	Αl _{vī}	0.1000	0.0875	
Fe ₂ O ₃	1.99	L. 88	2.18	2.13	Fe ³⁺	0.0741	0. 0899	
FeO	0.00	0.05	0.00	0.03	Ti	0.0000	0.0000	
MnO	0.02	0. 02	0.03	0.03	Cr ³⁺	0.0000	0.0000	
NiO	0.00	0.00	0.00	0.00	Fe ^{z+}	0.0039	0.0022	
MgO	41.93	42.04	41.20	41.53	Mn	0.0017	0. 0022	
CaO	0.14		0.10		Ni	0.0000	0.0000	
Na₂O	0.16		0.18		Mg	5.8396	5. 7847	
K₂O	0.00		0.00			<u> </u>	<u> </u>	
H₂O ⁺	13.03	13.06	13.30	13. 41				
总和	100.10	100. 00	99. 521	100.001				

表1 利蛇纹石的化学成分

Table 1 Chemical compositions of lizardites

*系参考穆斯堡尔谱提供的数据和扣除杂质后计算的百分含量。 天津地矿所岩矿测试室分析

Fe₂O₃ 分别为 1.88%和 2.13%。除了部分 Fe³⁺ 置换 Mg 外,还有部分 Fe³⁺ 置换 Si,这已由穆 斯堡尔谱证实。FeO 的含量很低,分别是 0.05%和 0.03%,故 Fe³⁺ 远远大于 Fe²⁺。至于 CaO 和 Na₂O 可能是杂质的组份,因为蛇纹石晶格一般不允许半径大的阳离子置换 Mg。

总之,利蛇纹石的成分特点是:主要组份 SiO₂ 和 MgO 的含量低于理论值,以类质同象方式 参 加 晶 格 的 Al₂O₃ 含 量 较 高, FeO 和 Fe₂O₃ : Fe₂O₃ 比 值 均 很 低,所 以 利 蛇 纹 石 在 Al₂O₃ - SiO₂ - FeO 图解上位于 Al₂O₃ - Fe₂O₃ 边线附近(图 1),属于高铝利蛇纹石一高铁利蛇 纹石系列^[5] 的中间成分的利蛇纹石。

为了做出比较合理的晶体化学式,应首先选择计算方法。鉴于蛇纹石族矿物对水的吸附 和在样品较少的情况下湿法分析水可能出现误差,作者认为,采用14(O)的计算方法、并参考 穆斯堡尔谱提供的铁价态和占位数据,有可能给出构造上有意义的晶体化学式。计算结果如 下:

1. $(Mg_{5,8396}Al_{0,1000}Fe_{0,0741}^{3+}Fe_{0,0039}^{2+}Mn_{0,0017})_{6,0193}$ (($Si_{3,7876}Al_{0,1543}Fe_{0,0581}^{3+})_{4}O_{10}$) (OH)

2. $(Mg_{5,7847}Al_{0,0875}Fe_{0,0879}^{3+}Fe_{0,0022}^{2+}Mn_{0,0022})_{5,9665}$ [($Si_{3,8898}Al_{0,0507}Fe_{0,0595}^{3+})_{4}O_{10}$](OH)₈

其中 Stet 和 Soct 均在前人的有关数据范围内 53。

3. X 射线衍射分析 两个样品的 X 射线衍射分析数据和晶胞参数如表 2。衍射线的 d 值 和强度基本与前人的资料一致,只是由于样品的纯度不够而混杂少量的纤蛇纹石衍射线。根 据出现的特征衍射线 2. 479~2. 481、1. 530、1. 501~1. 499,该两个样品应为利蛇纹石。

4. 热分析 图 2 示两个利蛇纹石的热分析曲线。在 100℃左右有一个非常宽阔的吸热 谷,指示脱去吸附水。在 640℃~690℃附近出现较宽的吸热复谷,标志羟基 (OH) 水逸出,同 时晶格开始破坏。在 820℃出现尖锐的放热峰,反映新相一橄榄石晶出。总的失重分别为 11.85%和 11.92%。

5. 红外吸收光谱 两个利蛇纹石的红外吸收光谱见图 3。图谱分三个波段,其中的主要 吸收带比较狭窄。

在第一个波段范围内 3698cm⁻¹ 处为一强吸收带,另在 3660cm⁻¹ 的吸收带,以不明显的肩 出现(图中未标出波数)。在 1080~946cm⁻¹ 范围内,有两个独立的吸收带 (1080~1078cm⁻¹和950~946cm⁻¹,系Si-O振动所引起。和纤蛇纹石比较,在1010cm⁻¹ 附近没有出现吸收带,这可能是利蛇纹石具较高的假六方对称,在层面内两个方向的格子强

(天津地矿所张来春分析) Fig. 3 Infra—red absorption spectra of lizardites

度、振动频率相近,两个 Si-O 伸缩振动产生简并的结果^[1]。在 612 ~ 442cm⁻¹ 范围内,出现 强度不同的四个吸收带: 612 ~ 608cm⁻¹、584 ~ 578cm⁻¹、462cm⁻¹ 和 442cm⁻¹,其中前两个 谱带应归为羟基弯曲振动。据 Stabican 和 Roy (1961)的研究,610cm⁻¹ 附近的谱带频率随 Al 含量增加而增加,这是因为红外光谱对矿物结构中阳离子的质量和电价效应敏感,OH 伸缩振 动受到 OH 配位八面体的 Al 离子的影响所致。

6、穆斯堡尔谱 为了确定利蛇纹石晶格中铁的价态和占位,并做出确切的晶体化学式,吴

表 2 利蛇纹石的 X-射线衍射分析

Table 2 X-ray diffraction data of lizardites

	1		2		3		4		5		6	
NO	83CZ-7		83BZ-119M		川大 119		涞源		延庆		河北某矽卡 岩多金属矿	
	d	I	d	I	đ	I.	đ	I	d	I	d	I
1	7.149	100	7.138	100	7.196	100	7.243	90	7.31	100	7.31	100
2	4. 543	10	4. 543	10	4.566	30	4. 534	40	4. 54	50	4. 529	31
3	3.867	5	3.867	5								
4	3. 622	90	3.619	90	3. 625	70	3.635	80	3.65	90	3.66	64
5											3. 031	13
6	2.644	10	2.637	5	2.610	10			2.64	20		
7							2. 585	5			2.565	60
8	2. 481	60	2. 479	70	2. 493	40	2. 487	60	2.49	70		
9	2. 423	10	2. 423	10	2. 453	5	2. 442	20				
10					2. 327	20			2.28	10		
11	2.137	20	2.137	30	2.·14 1	20	2.140	20	2.15	30	2.141	22
12							2.085	20				
13					1.959	20						
14	1.817	5	1.816	10			1.825	10				
15	1.784	10	1.784	20	1.791	10	1.784	15				
16	1.731	5	1.731	10	1.735	10						
17									1.62	10		
18	1.530	40	1.530	30	1.535	30	1. 531	45	1. 530	40	1.530	30
19	1.501	30	1.499	30	1.502	20	1.501	15	1. 500	20	1.503	20
20	1.459	5	1.457	10			1. 459	2				
21	1.410	5	1.410	10			1. 412	2				
а	5.29	57	5. 2806									
b	9.18	12	9. 1856									
с	7.30	40	7. 2940									

No.1~2 本文,辽宁省地矿局中心实验室苗春省分析, No.3-5 据江绍英等 (1987), No.6 据王濮等 (1984)

功保在室温条件下,使用 AME-50 型穆斯堡尔谱仪测试了两个样品,穆斯堡尔谱和参数见图

4 和表 3。

	(4)大	配位	化学位移*	四极分裂	半高宽	拟合度	面积百			
样号	201 A	状况	(毫米/秒)	(毫米/秒)	(毫米/秒)	拟合度 X ² 275 336	分比			
$\frac{1}{83CZ-7}$	Fe ³⁺	tet	0. 20	0.358	0. 316		41.60			
	Fe ³⁺	oct	0.34	0.801	0. 388	275	53.08			
	Fe ^{z+}	oct	1.19	2.540	0. 302		5. 32			
2 83 <i>BZ</i> 119 <i>M</i>	Fe ³⁺	tet	0. 192	0. 382	0. 314		38.49			
	Fe ³⁺	oct	0. 350	0.781	0.418 •	336	58.20			
	Fe ²⁺	oct	1.186	2.540	0. 302		3. 30			

表 3 利蛇纹石的穆斯堡尔参数

Table 3 Mossbauer parameters for lizardites

* 相对于 α-Fe

从表 3 可知, Fe 分 Feⁱ⁺和 Feⁱ⁺两种价态。Feⁱ⁺占绝对优势,占总数的 94%以上。除了 部分 Feⁱ⁺置换四面体结构层的 Si 外,还有部分 Feⁱ⁺置换八面体结构层的 Mg。至于进入八面 体结构层 Feⁱ⁺ 的数量极少。

根据晶体化学式计算给出的 Fe 离子数和表 3 给出的面积百分比可以计算出不同价态、不同占位的 Fe 离子数,从而得到比较确切的晶体化学式(见化学成分特点部分)。此外,还可以 推算出 Fe₂O₃和 FeO 的重量百分含量,改正原化学分析存在的误差。

7、电子显微镜观察 前面提到,利蛇纹石晶体呈板片状,但在电镜下的整体形貌呈板片互 相叠置的叠瓦状(照片 3)。

照片 4 是电子束垂直(001)的电子衍射图。据测试人李之仁、张小红的意见,从该图只能 测出 a 值 (5.33 Å),应归属六方晶系,这与江绍英等(1987)的见解⁽¹⁾基本一致。但是也有人 持不同的见解。Zussman、Brindley 和 Comer (1957)⁽⁶⁾认为利蛇纹石单晶(块状,产自挪威 Snarum)的电子衍射图是相当于 a = 5.2 Å, b = 9.1 Å(与 X 射线粉晶衍射给出的 a = 5.31 Å b = 9.20 Å一致)的带心矩形网格,斑点呈六方排列。黄伯钧和闵育顺(1982)⁽²⁾也有类似 的阐述。他们指出,一个以(001)面垂直于电子束的利蛇纹石单晶的电子衍射谱,斑点呈六方 形分布。从衍射谱上可直接测出 a.b 值。很明显,他们都将利蛇纹石归属于单斜晶系。以上 关于利蛇纹石所属晶系方面存在的分歧可能与特殊的晶体构造有关,正如 Deer 等所指出的, 由粉晶谱测定的利蛇纹石单位晶胞是单层的和正交六方的(即 B = 90°),但是构造的细节没有 确定。

本文利蛇纹石的电子衍射谱与他们提供的非常类似。尽管利蛇纹石的构造细节还不明确,但作者认为,如将其归属于单斜晶系,则可使电子衍射谱与 X 射线粉晶衍射的结果取得一致,便于研究、对比。

当然,只凭这样一个电子衍射谱来确定利蛇纹石是不够的,还需要从倾斜试样得到其它晶带的衍射谱才能判断。

Fig. 4 Mössbauer spectra for lizardites (No. 1 83CZ-7, No. 2 83BZ-119M)

本区蛇纹石是超基性岩及与其有关的 矿体经蛇纹石化的产物。形成蛇纹石的物 质成分主要来自超基性岩和矿体中的镁铁 硅酸盐矿物(斜方辉石、橄榄石等),只有水 是加入的组份。关于水的来源、众说纷纭, 至今还未取得一致的见解。但是根据本区 没有发现较大的花岗质侵入体和蛇纹石化 作用发生在岩体(包括矿体)及其围岩区域 变质之后等事实,作者推测促使超基性岩 体和矿体蛇纹石化作用的水是从外部带入 的,包括围岩的粒间水和大气水。

以下讨论利蛇纹石的形成条件:

1、温度和压力 关于蛇纹石形成的温 度、压力条件,前人做了许多工作。Bowen 和 Tuttle (1949)⁽³⁾ 首先建立了 MgO – SiO₂ – H₂O 系统水镁石+蛇纹石与镁橄榄 石+水蒸气反应的单变平衡曲线。在低于 1kb、有水蒸气存在的条件下,在 400℃镁 橄榄石分解为水镁石和蛇纹石;压力为 3kb 时,它们在 450℃形成。Pistorius (1963)将这个单变反应实验扩展至 50kb。 在这个压力下,镁橄榄石+水蒸气在大致 475℃分解为水镁石+蛇纹石。但是,这些 实验研究工作没有涉及铁对系统的影响。

Page (1967a)认为,所研究的反应一定在低得多的温度下发生。后来,Scarfe 和 Wyllie (1967) 关于这个反应的实验工作支持 Page 的意见。在压力低于 1kb 下,Fe-水镁石和 Fe-蛇纹石在 300℃时达到稳定,而在 3kb 下,则需达 325℃才稳定。本区超基性岩中的斜方辉石、橄榄石等 矿物均含有一定量的铁,蛇纹石化作用的产物主要是利蛇纹石和磁铁矿(尘埃状的),推测利蛇 纹石形成温度也应在 300°~325℃。至于利蛇纹石形成时的压力却不能测定。但是从利蛇纹 石的交代成因,且无显示高压的共生矿物来看,利蛇纹石似乎应在低压下形成。

2、裂隙 这是超基性岩蛇纹石化作用不可缺少的条件,因为无论水的运移,还是伴随蛇纹石化引起的体积膨胀均与裂隙有关,另外,蛇纹石化作用的初始阶段,在许多情况下都是从裂

隙开始交代蚀变的。本区超基性岩体及与其有关矿体中的裂隙比较发育,据钻孔资料,深部还 有破碎带。毫无疑问,它们对本区利蛇纹石的广泛发育起着重要的作用。

3、氧化作用 在超基性岩蛇纹石化过程中,伴随氧化作用,这从超基性岩中原矿物斜方辉 石、橄榄石和蛇纹石化作用的产物利蛇纹石、磁铁矿(尘埃状的)中铁离子价态变化即可看出。 众所周知,前者的铁离子以 Feⁱ⁺ 为主,而后者的铁离子则以 Feⁱ⁺ 为最多。铁离子价态的转变 是以水为代价来实现的,反应可用下式来表示: 2Feⁱ⁺ + H₂O ≒ 2Feⁱ⁺ + O^{i−} + H₂,式中的 H₂O 还原为 H₂,从系统中逸出,故反应向右进行。由这个反应形成的 Feⁱ⁺,部分作为磁铁矿的 组份,部分参加蛇纹石的晶格,形成利蛇纹石。

4、某些化学组份的影响 过去人们认为纤蛇纹石、叶蛇纹石和利蛇纹石在化学成分方面 没有明显的差别,用同一晶体化学式 Mg。[Si.O。。](OH)。来表示它们的化学成分。这样,就将它 们看作同质多象变体,归属于不同的物理稳定域。但是,在蛇纹石合成产物中,不是极小的纤 蛇纹石纤维,就是只作为蛇纹石族的一个未经鉴别的矿物。另外,自然界产出的蛇纹石有几种 蛇纹石共存的实例 (如利蛇纹石和纤蛇纹石)。固此,我们还不真正了解三个蛇纹石矿物种在 物理稳定域方面究竟存在什么差别。显然,将它们视为同质多象变体的证据似乎还不充分。

现在,我们研究某些次要化成分对蛇纹石矿物种的影响。为此,我们引证前人的研究结论:(1)蛇纹石矿物种之间在次要成分方面(如 Al³⁺、Fe³⁺)存在某些差别,有的差别还较大,因为高铝利蛇纹石、高铁利蛇纹石等矿物变种已在自然界发现。(2)由 MgO-SiO, - H₂O 系统合成实验的产物一般为纤维状(纤蛇纹石),如果系统中存在如 Al³⁺、Fe³⁺ 等离子、并且这些离子参加晶格,则形成板片状蛇纹石。这说明某些组份是否参加晶格与蛇纹石矿物种有密切的关系。

关于出现不同蛇纹石形态的原因,前人做过详细的研究。总的来说,它们是内部构造的外 在反映。所有蛇纹石都具有与高岭石构造类似的层状构造。但在蛇纹石的构造中,由于硅氧 四面体结构层和镁氧八面体结构层配置不当,它们之间存在不协调性。当由 MgO - SiO, - H,O 系统形成的蛇纹石时,上述两种结构层的不协调性,只能靠结构层卷曲来 调整,形成卷轴状、套管状等构造形象,晶体常呈纤维状,故纤蛇纹石的化学成分中的 SiO,和 MgO 含量比较接近理论值,没有或很少有类质同象组份。假如系统中有 Al¹⁺、Fe¹⁺等离子置 换 Si 和 Mg,由于它们的离子半径比 Si 的大、比 Mg 的小,则可最大限度地调整两种结构层之 间的不协调性。所以结构层不卷曲,呈平整的层状构造,晶体形态常呈小的板片状。从产状 看,本区利蛇纹石就是在这样的条件下形成的。它们呈板片状,化学成分中的 SiO,和 MgO 含 量低于蛇纹石成分的理论值,而 Al₄O,和 Fe₂O,含量却较高。但是应在此提及,对于铁参与晶 格来说,铁的价态很关键。在蛇纹石化作用时,原矿物中的大部分 Fe¹⁺ 必需转变为 Fe¹⁺。 Coleman 和 Keith (1971)曾指出,"交代斜方辉石的蛇纹石(绢石)是利蛇纹石"⁽³⁾。这一经验总 结暗示含有较多铝和铁的斜方辉石在水的作用下,有利于利蛇纹石晶出。

因此,作者认为,置换晶格中 Si 和 Mg 的 Al³⁺、Fe³⁺等离子和水,对本区利蛇纹石的形成 起着主要的作用,温度和压力居于次要地位。

照片1 磁铁蛇纹岩 。利蛇纹石浅灰 色,板片状(Liz)。正交偏光,×33 (83BZ-119M)。

照片2 蛇纹石磁铁矿。利蛇纹石白色 板片状 (Liz),磁铁矿黑色 (Mte)。正交 偏光,×33 (83CZ-7)。

照片3 利蛇纹石的电子显微镜照片, ×1000(83BZ-119M)

照片 4 利蛇纹石的电子衍射图, ×18000 (83CZ-7)。

参考文献

〔1〕江绍英(主编),蛇纹石矿物学及性能测试,地质出版社,1987。

〔2〕黄伯钧、闵育顺,蛇纹石族矿物的电子衍射研究,矿物物理和矿物材料研究,科学出版社,1982。

- (3) Coleman, R. G. and Keith, T. E., A chemical study of serpentinization Burro Mountain, California, J. Petrol. Voi. 12, part 2, pp. 311~328, 1987.
- (4) Deer, W. A., Howie, R. A. and Zussman, J., Rock-forming minerals, Vol. 3, second impression, Longmans, 1963.
- (5) Whittaker, E. J. W. and Wicks, F. J., Chemical differences among the serpentine "polymorphs": a discussion, Am. Mineral., Vol. 55, pp. 1025-1047, 1970.
- (6) Zussman, J., Brindley G. W. and Comer, J. J., Electron diffraction studies of serpentine minerals, Am. Mineral., V01. 42, pp. 133-153, 1957.

A STUDY OF THE LIZARDITES IN ZHAOANZHUANG IRON ORE DEPOSIT AT WUYANG COUNTY,

HENAN PROVINCE

Jiang Yongnian

(Tianjin Institute of Geology and Mineral Resources)

Abstract

The lizardites occurring in the Zhaoanzhuang iron ore at Wuyang County, Henan province are studied from different aspects, including chemical composition, physical properties, X - ray diffraction, thermal analysis, infrared absorption spectrum, MÖssbauer spectrum, electron diffraction and genesis.

According to the genetic information of these minerals, the author considers that such cations as Al^{i+} , Fe^{i+} entering the crystal lattice and water play a major part in the formation of the lizardite, while temperature and pressure seem to be secondary.